Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-29T05:50:18.590Z Has data issue: false hasContentIssue false

General model for segregation forces in flowing granular mixtures

Published online by Cambridge University Press:  29 July 2024

Yifei Duan
Affiliation:
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
Lu Jing
Affiliation:
Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, PR China
Paul B. Umbanhowar
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
Julio M. Ottino
Affiliation:
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208, USA
Richard M. Lueptow*
Affiliation:
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208, USA
*
Email address for correspondence: r-lueptow@northwestern.edu

Abstract

Particle segregation in dense flowing size-disperse granular mixtures is driven by gravity and shear, but predicting the associated segregation force due to both effects has remained an unresolved challenge. Here, a model of the combined gravity- and kinematics-induced segregation force on a single intruder particle is integrated with a model of the concentration dependence of the gravity-induced segregation force. The result is a general model of the net particle segregation force in flowing size-bidisperse granular mixtures. Using discrete element method simulations for comparison, the model correctly predicts the segregation force for a variety of mixture concentrations and flow conditions in both idealized and natural shear flows.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, M., Satoh, M. & Miyanami, K. 1991 Optimum combination of size ratio, density ratio and concentration to minimize free surface segregation. Powder Technol. 68 (2), 145152.CrossRefGoogle Scholar
Bancroft, R.S.J. & Johnson, C.G. 2021 Drag, diffusion and segregation in inertial granular flows. J. Fluid Mech. 924, A3.CrossRefGoogle Scholar
Berzi, D., Jenkins, J.T. & Richard, P. 2020 Extended kinetic theory for granular flow over and within an inclined erodible bed. J. Fluid Mech. 885, A27.CrossRefGoogle Scholar
Clark, A.H., Thompson, J.D., Shattuck, M.D., Ouellette, N.T. & O'Hern, C.S. 2018 Critical scaling near the yielding transition in granular media. Phys. Rev. E 97 (6), 062901.CrossRefGoogle ScholarPubMed
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Géotechnique 29 (1), 4765.CrossRefGoogle Scholar
Cúñez, F.D., Patel, D. & Glade, R.C. 2024 How particle shape affects granular segregation in industrial and geophysical flows. Proc. Natl Acad. Sci. USA 121 (6), e2307061121.CrossRefGoogle ScholarPubMed
Duan, Y., Jing, L., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2022 Segregation forces in dense granular flows: closing the gap between single intruders and mixtures. J. Fluid Mech. 935, R1.CrossRefGoogle Scholar
Duan, Y., Peckham, J., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2023 Designing minimally segregating granular mixtures for gravity-driven surface flows. AIChE J. 69, e18032.CrossRefGoogle Scholar
Duan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2020 Segregation models for density-bidisperse granular flows. Phys. Rev. Fluids 5, 044301.CrossRefGoogle Scholar
Duan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2021 Modelling segregation of bidisperse granular mixtures varying simultaneously in size and density for free surface flows. J. Fluid Mech. 918, A20.CrossRefGoogle Scholar
Fan, Y. & Hill, K.M. 2011 a Phase transitions in shear-induced segregation of granular materials. Phys. Rev. Lett. 106 (21), 218301.CrossRefGoogle ScholarPubMed
Fan, Y. & Hill, K.M. 2011 b Theory for shear-induced segregation of dense granular mixtures. New J. Phys. 13 (9), 095009.CrossRefGoogle Scholar
Fan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2013 Kinematics of monodisperse and bidisperse granular flows in quasi-two-dimensional bounded heaps. Proc. R. Soc. A 469 (2157), 20130235.CrossRefGoogle Scholar
Félix, G. & Thomas, N. 2004 Evidence of two effects in the size segregation process in dry granular media. Phys. Rev. E 70 (5), 051307.CrossRefGoogle ScholarPubMed
Foerster, S.F, Louge, M.Y., Chang, H. & Allia, K. 1994 Measurements of the collision properties of small spheres. Phys. Fluids 6 (3), 11081115.CrossRefGoogle Scholar
Frey, P. & Church, M. 2009 How river beds move. Science 325 (5947), 15091510.CrossRefGoogle ScholarPubMed
Fry, A.M., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2018 Effect of pressure on segregation in granular shear flows. Phys. Rev. E 97 (6), 062906.CrossRefGoogle ScholarPubMed
Girolami, L., Hergault, V., Vinay, G. & Wachs, A. 2012 A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments. Granul. Matt. 14 (3), 381392.CrossRefGoogle Scholar
Gray, J.M.N.T. 2018 Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50 (1), 407433.CrossRefGoogle Scholar
Gray, J.M.N.T. & Thornton, A.R. 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A 461 (2057), 14471473.CrossRefGoogle Scholar
Guillard, F., Forterre, Y. & Pouliquen, O. 2016 Scaling laws for segregation forces in dense sheared granular flows. J. Fluid Mech. 807, R1.CrossRefGoogle Scholar
Hill, K.M. & Tan, D.S. 2014 Segregation in dense sheared flows: gravity, temperature gradients, and stress partitioning. J. Fluid Mech. 756, 5488.CrossRefGoogle Scholar
Jenkins, J.T. & Mancini, F. 1987 Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks. J. Appl. Mech. 54, 2734.CrossRefGoogle Scholar
Jenkins, J.T. & Yoon, D.K. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88 (19), 194301.CrossRefGoogle ScholarPubMed
Jing, L., Kwok, C.Y. & Leung, Y.F. 2017 Micromechanical origin of particle size segregation. Phys. Rev. Lett. 118 (11), 118001.CrossRefGoogle ScholarPubMed
Jing, L., Ottino, J.M., Lueptow, R.M. & Umbanhowar, P.B. 2020 Rising and sinking intruders in dense granular flows. Phys. Rev. Res. 2 (2), 022069.CrossRefGoogle Scholar
Jing, L., Ottino, J.M., Lueptow, R.M. & Umbanhowar, P.B. 2021 A unified description of gravity-and kinematics-induced segregation forces in dense granular flows. J. Fluid Mech. 925, A29.CrossRefGoogle Scholar
Jing, L., Ottino, J.M., Umbanhowar, P.B. & Lueptow, R.M. 2022 Drag force in granular shear flows: regimes, scaling laws and implications for segregation. J. Fluid Mech. 948, A24.CrossRefGoogle Scholar
Jones, R.P., Isner, A.B., Xiao, H., Ottino, J.M., Umbanhowar, P.B. & Lueptow, R.M. 2018 Asymmetric concentration dependence of segregation fluxes in granular flows. Phys. Rev. Fluids 3 (9), 094304.CrossRefGoogle Scholar
Kamrin, K., Hill, K.M., Goldman, D.I. & Andrade, J.E. 2024 Advances in modeling dense granular media. Annu. Rev. Fluid Mech. 56 (1), 215240.CrossRefGoogle Scholar
Kim, S. & Kamrin, K. 2023 A second-order non-local model for granular flows. Front. Phys. 11, 1092233.CrossRefGoogle Scholar
Larcher, M. & Jenkins, J.T. 2015 The evolution of segregation in dense inclined flows of binary mixtures of spheres. J. Fluid Mech. 782, 405429.CrossRefGoogle Scholar
Lerner, E., Düring, G. & Wyart, M. 2012 A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc. Natl Acad. Sci. USA 109 (13), 47984803.CrossRefGoogle ScholarPubMed
Liu, D., Singh, H. & Henann, D.L. 2023 Coupled continuum modelling of size segregation driven by shear-strain-rate gradients and flow in dense, bidisperse granular media. J. Fluid Mech. 976, A16.CrossRefGoogle Scholar
Liu, M. & Müller, C.R. 2021 Lift force acting on an intruder in dense, granular shear flows. Phys. Rev. E 104 (6), 064903.CrossRefGoogle Scholar
Luding, S. 2008 Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ. 12 (7–8), 785826.CrossRefGoogle Scholar
Neveu, A., Larcher, M., Delannay, R., Jenkins, J.T. & Valance, A. 2022 Particle segregation in inclined high-speed granular flows. J. Fluid Mech. 935, A41.CrossRefGoogle Scholar
Ottino, J.M. & Khakhar, D.V. 2000 Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32 (1), 55.CrossRefGoogle Scholar
Ottino, J.M. & Lueptow, R.M. 2008 On mixing and demixing. Science 319 (5865), 912913.CrossRefGoogle ScholarPubMed
Rousseau, H., Chassagne, R., Chauchat, J., Maurin, R. & Frey, P. 2021 Bridging the gap between particle-scale forces and continuum modelling of size segregation: application to bedload transport. J. Fluid Mech. 916, A26.CrossRefGoogle Scholar
Sahu, V.K., Kumawat, S., Agrawal, S. & Tripathi, A. 2023 Particle force-based density segregation theory for multi-component granular mixtures in a periodic chute flow. J. Fluid Mech. 956, A8.CrossRefGoogle Scholar
Savage, S.B. & Lun, C.K.K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Schlick, C.P., Isner, A.B., Freireich, B.J., Fan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2016 A continuum approach for predicting segregation in flowing polydisperse granular materials. J. Fluid Mech. 797, 95109.CrossRefGoogle Scholar
Staron, L. 2018 Rising dynamics and lift effect in dense segregating granular flows. Phys. Fluids 30 (12), 123303.CrossRefGoogle Scholar
Staron, L. & Phillips, J.C. 2014 Segregation time-scale in bi-disperse granular flows. Phys. Fluids 26 (3), 033302.CrossRefGoogle Scholar
Thomas, N. 2000 Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62 (1), 961974.CrossRefGoogle ScholarPubMed
Thornton, A.R. 2021 A brief review of (multi-scale) modelling approaches to segregation. EPJ Web Conf. 249, 01004.CrossRefGoogle Scholar
Trewhela, T., Ancey, C. & Gray, J.M.N.T. 2021 An experimental scaling law for particle-size segregation in dense granular flows. J. Fluid Mech. 916, A55.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2011 Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: a granular Stokes experiment. Phys. Rev. Lett. 107 (10), 108001.CrossRefGoogle Scholar
Tripathi, A., Kumar, A., Nema, M. & Khakhar, D.V. 2021 Theory for size segregation in flowing granular mixtures based on computation of forces on a single large particle. Phys. Rev. E 103 (3), L031301.CrossRefGoogle ScholarPubMed
Tunuguntla, D.R., Weinhart, T. & Thornton, A.R. 2016 Comparing and contrasting size-based particle segregation models. Comput. Part. Mech. 4 (4), 119.Google Scholar
Umbanhowar, P.B., Lueptow, R.M. & Ottino, J.M. 2019 Modeling segregation in granular flows. Annu. Rev. Chem. Biomol. Engng 10 (1), 5.15.25.Google ScholarPubMed
van der Vaart, K., van Schrojenstein Lantman, M.P., Weinhart, T., Luding, S., Ancey, C. & Thornton, A.R. 2018 Segregation of large particles in dense granular flows suggests a granular Saffman effect. Phys. Rev. Fluids 3 (7), 074303.CrossRefGoogle Scholar
Xiao, H., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2016 Modelling density segregation in flowing bidisperse granular materials. Proc. R. Soc. A 472 (2191), 20150856.CrossRefGoogle Scholar
Yennemadi, A.V. & Khakhar, D.V. 2023 Drag, lift, and buoyancy forces on a single large particle in dense granular flows. Phys. Rev. Fluids 8 (7), 074301.CrossRefGoogle Scholar
Supplementary material: File

Duan et al. supplementary material

Duan et al. supplementary material
Download Duan et al. supplementary material(File)
File 1.1 MB