Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-16T22:04:59.994Z Has data issue: false hasContentIssue false

Liquid inertia versus bubble cloud buoyancy in circular plunging jet experiments

Published online by Cambridge University Press:  05 January 2024

Narendra Dev
Affiliation:
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, LMFA, UMR5509, 69622 Villeurbanne, France
J. John Soundar Jerome
Affiliation:
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, LMFA, UMR5509, 69622 Villeurbanne, France
Hélène Scolan
Affiliation:
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, LMFA, UMR5509, 69622 Villeurbanne, France
Jean-Philippe Matas*
Affiliation:
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, LMFA, UMR5509, 69622 Villeurbanne, France
*
Email address for correspondence: jean-philippe.matas@univ-lyon1.fr

Abstract

When a liquid jet plunges into a pool, it can generate a bubble-laden jet flow underneath the surface. This common and simple phenomenon is investigated experimentally for circular jets to illustrate and quantify the role played by the net gas/liquid void fraction on the maximum bubble penetration depth. It is first shown that an increase in either the impact diameter or the jet fall height to diameter ratio at constant impact momentum leads to a reduction in the bubble cloud size. By measuring systematically the local void fraction using optical probes in the biphasic jet, it is then demonstrated that this effect is a direct consequence of the increase in air content within the cloud. A simple momentum balance model, including only inertia and the buoyancy force, is shown to predict the bubble cloud depth without any fitting parameters. Finally, a Froude number based on the bubble terminal velocity, the cloud depth and also the net void fraction is introduced to propose a simple criterion for the threshold between the inertia-dominated and buoyancy-dominated regimes.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertola, N., Wang, H. & Chanson, H. 2018 A physical study of air–water flow in planar plunging water jet with large inflow distance. Intl J. Multiphase Flow 100, 155171.CrossRefGoogle Scholar
Biń, A.K. 1993 Gas entrainment by plunging liquid jets. Chem. Engng Sci. 48 (21), 35853630.CrossRefGoogle Scholar
Bonetto, F., Drew, D. & Lahey, R.T. Jr. 1994 The analysis of a plunging liquid jet – the air entrainment process. Chem. Engng Commun. 130 (1), 1129.CrossRefGoogle Scholar
Bonetto, F. & Lahey, R.T. 1993 An experimental study on air carryunder due to a plunging liquid jet. Intl J. Multiphase Flow 19 (2), 281294.CrossRefGoogle Scholar
Brattberg, T. & Chanson, H. 1998 Air entrapment and air bubble dispersion at two-dimensional plunging water jets. Chem. Engng Sci. 53 (24), 41134127.CrossRefGoogle Scholar
Chanson, H. 2002 Hydraulics of Stepped Chutes and Spillways. CRC Press.Google Scholar
Chanson, H., Aoki, S. & Hoque, A. 2004 Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets. Chem. Engng Sci. 59 (4), 747758.CrossRefGoogle Scholar
Chanson, H. & Manasseh, R. 2003 Air entrainment processes in a circular plunging jet: void-fraction and acoustic measurements. Trans. ASME J. Fluids Engng 125 (5), 910921.CrossRefGoogle Scholar
Chirichella, D., Gomez Ledesma, R., Kiger, K.T. & Duncan, J.H. 2002 Incipient air entrainment in a translating axisymmetric plunging laminar jet. Phys. Fluids 14 (2), 781790.CrossRefGoogle Scholar
Clanet, C. & Lasheras, J.C. 1997 Depth of penetration of bubbles entrained by a plunging water jet. Phys. Fluids 9 (7), 18641866.CrossRefGoogle Scholar
Cummings, P.D. & Chanson, H. 1997 Air entrainment in the developing flow region of plunging jets – part 1: theoretical development. Trans. ASME J. Fluids Engng 119 (3), 597602.CrossRefGoogle Scholar
Cummings, P.D. & Chanson, H. 1999 An experimental study of individual air bubble entrainment at a planar plunging jet. Chem. Engng Res. Des. 77 (2), 159164.CrossRefGoogle Scholar
van de Donk, J.A.C. 1981 Water aeration with plunging jets. PhD thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
El Hammoumi, M., Achard, J.-L. & Davoust, L. 2002 Measurements of air entrainment by vertical plunging liquid jets. Exp. Fluids 32, 624638.CrossRefGoogle Scholar
Ervine, D.A. & Falvey, H.T. 1987 Behaviour of turbulent water jets in the atmosphere and in plunge pools. Proc. Inst. Civ. Engrs 83 (1), 295314.Google Scholar
Freire, A.P.S., Miranda, D.D.E., Luz, L.M.S. & França, G.F.M. 2002 Bubble plumes and the Coanda effect. Intl J. Multiphase Flow 28 (8), 12931310.CrossRefGoogle Scholar
Guyot, G. 2019 Contribution à la caractérisation des processus d'entraînement d'air dans les circuits d'aménagements hydro-électriques. PhD thesis, Université Grenoble Alpes, France.Google Scholar
Guyot, G., Cartellier, A. & Matas, J.-P. 2019 Depth of penetration of bubbles entrained by an oscillated plunging water jet. Chem. Engng Sci. 2, 100017.Google Scholar
Guyot, G., Cartellier, A. & Matas, J.-P. 2020 Penetration depth of a plunging jet: from microjets to cascades. Phys. Rev. Lett. 124 (19), 194503.CrossRefGoogle ScholarPubMed
Harby, K., Chiva, S. & Muñoz-Cobo, J.L. 2014 An experimental study on bubble entrainment and flow characteristics of vertical plunging water jets. Expl Therm. Fluid Sci. 57, 207220.CrossRefGoogle Scholar
Hoque, A. & Aoki, S. 2008 Air entrainment and associated energy dissipation in steady and unsteady plunging jets at free surface. Appl. Ocean Res. 30 (1), 3745.CrossRefGoogle Scholar
Horn, G. & Thring, M.W. 1956 Angle of spread of free jets. Nature 178 (4526), 205206.CrossRefGoogle Scholar
Kapur, J.N., Sahoo, P.K. & Wong, A.K.C. 1985 A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29 (3), 273285.CrossRefGoogle Scholar
Kiger, K.T. & Duncan, J.H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44, 563596.CrossRefGoogle Scholar
Kirillov, A., et al. 2023 Segment Anything. arXiv:2304.02643.CrossRefGoogle Scholar
Kobus, H.E. 1968 Analysis of the flow induced by air-bubble systems. In Proc. 11th Conf. Coastal Engineering, London, United Kingdom, September 1968 (ed. M.P. O'Brien), pp. 1016–1031. American Society of Civil Engineers.CrossRefGoogle Scholar
Kramer, M., Wieprecht, S. & Terheiden, K. 2016 Penetration depth of plunging liquid jets – a data driven modelling approach. Expl Therm. Fluid Sci. 76, 109117.CrossRefGoogle Scholar
Lin, T.J. & Donnelly, H.G. 1966 Gas bubble entrainment by plunging laminar liquid jets. AIChE J. 12 (3), 563571.CrossRefGoogle Scholar
Liu, C., Gao, R. & Hu, C. 2022 A consistent mass–momentum flux computation method for the simulation of plunging jet. Phys. Fluids 34 (3), 032114.CrossRefGoogle Scholar
Liu, S., et al. 2023 Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection. arXiv:2303.05499.Google Scholar
Lorenceau, É., Quéré, D. & Eggers, J. 2004 Air entrainment by a viscous jet plunging into a bath. Phys. Rev. Lett. 93 (25), 254501.CrossRefGoogle ScholarPubMed
L'vov, V.S., Pomyalov, A., Procaccia, I. & Govindarajan, R. 2008 Random vortex-street model for a self-similar plane turbulent jet. Phys. Rev. Lett. 101 (9), 094503.CrossRefGoogle ScholarPubMed
Ma, J., Oberai, A.A., Drew, D.A., Lahey, R.T. Jr. & Moraga, F.J. 2010 A quantitative sub-grid air entrainment model for bubbly flows – plunging jets. Comput. Fluids 39 (1), 7786.CrossRefGoogle Scholar
Maxworthy, T., Gnann, C., Kürten, M. & Durst, F. 1996 Experiments on the rise of air bubbles in clean viscous liquids. J. Fluid Mech. 321, 421441.CrossRefGoogle Scholar
McKeogh, E.J. & Ervine, D.A. 1981 Air entrainment rate and diffusion pattern of plunging liquid jets. Chem. Engng Sci. 36 (7), 11611172.CrossRefGoogle Scholar
Miwa, S., Moribe, T., Tsutsumi, K. & Hibiki, T. 2018 Experimental investigation of air entrainment by vertical plunging liquid jet. Chem. Engng Sci. 181, 251263.CrossRefGoogle Scholar
Qu, X., Goharzadeh, A., Khezzar, L. & Molki, A. 2013 Experimental characterization of air-entrainment in a plunging jet. Expl Therm. Fluid Sci. 44, 5161.CrossRefGoogle Scholar
Roy, A.K., Maiti, B. & Das, P.K. 2013 Visualisation of air entrainment by a plunging jet. Procedia Engng 56, 468473.CrossRefGoogle Scholar
Schindelin, J., et al. 2012 Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9 (7), 676682.CrossRefGoogle ScholarPubMed
Sene, K.J. 1988 Air entrainment by plunging jets. Chem. Engng Sci. 43 (10), 26152623.CrossRefGoogle Scholar
Speirs, N.B., Pan, Z., Belden, J. & Truscott, T.T. 2018 The water entry of multi-droplet streams and jets. J. Fluid Mech. 844, 10841111.CrossRefGoogle Scholar
Suciu, G.D. & Smigelschi, O. 1976 Size of the submerged biphasic region in plunging jet systems. Chem. Engng Sci. 31, 12171220.CrossRefGoogle Scholar
Tsai, W.-H. 1985 Moment-preserving thresholding: a new approach. Comput. Vis. Graph. Image Process. 29 (3), 377393.CrossRefGoogle Scholar
Van de Sande, E. & Smith, J.M. 1973 Surface entrainment of air by high velocity water jets. Chem. Engng Sci. 28 (5), 11611168.CrossRefGoogle Scholar
Van de Sande, E. & Smith, J.M. 1976 Jet break-up and air entrainment by low velocity turbulent water jets. Chem. Engng Sci. 31 (3), 219224.CrossRefGoogle Scholar
Wang, H., Slamet, N.S., Zhang, G. & Chanson, H. 2018 Intrusive measurements of air–water flow properties in highly turbulent supported plunging jets and effects of inflow jet conditions. Chem. Engng Sci. 177, 245260.CrossRefGoogle Scholar
Zhu, Y., Oğuz, H.N. & Prosperetti, A. 2000 On the mechanism of air entrainment by liquid jets at a free surface. J. Fluid Mech. 404, 151177.CrossRefGoogle Scholar
Supplementary material: File

Dev et al. supplementary movie 1

Dn= 2.7 mm Vi = 5.92m/s Hf/Dn=20
Download Dev et al. supplementary movie 1(File)
File 7 MB
Supplementary material: File

Dev et al. supplementary movie 2

Dn=2.7 mm Vi =6.05 m/s Hf/Dn=50
Download Dev et al. supplementary movie 2(File)
File 7.2 MB
Supplementary material: File

Dev et al. supplementary movie 3

Dn= 2.7 mm Vi = 10.26m/s Hf/Dn=20
Download Dev et al. supplementary movie 3(File)
File 4.6 MB
Supplementary material: File

Dev et al. supplementary movie 4

Dn= 2.7 mm Vi = 10.26m/s Hf/Dn=20
Download Dev et al. supplementary movie 4(File)
File 7 MB
Supplementary material: File

Dev et al. supplementary movie 5

Dn=8 mm Vi =3.76 m/s Hf/Dn=20
Download Dev et al. supplementary movie 5(File)
File 5.8 MB
Supplementary material: File

Dev et al. supplementary movie 6

Dn=8 mm Vi =3.76 m/s Hf/Dn=20
Download Dev et al. supplementary movie 6(File)
File 2 MB
Supplementary material: File

Dev et al. supplementary movie 7

Dn= 8 mm Vi = 9.6 m/s Hf/Dn=20
Download Dev et al. supplementary movie 7(File)
File 5.4 MB
Supplementary material: File

Dev et al. supplementary movie 8

Dn= 8 mm Vi = 9.6 m/s Hf/Dn=20
Download Dev et al. supplementary movie 8(File)
File 9.6 MB
Supplementary material: File

Dev et al. supplementary movie 9

Dn=8 mm Vi = 9.8 m/s Hf/Dn=100
Download Dev et al. supplementary movie 9(File)
File 9.9 MB
Supplementary material: File

Dev et al. supplementary movie 10

Dn=8 mm Vi = 9.8 m/s Hf/Dn=100
Download Dev et al. supplementary movie 10(File)
File 5 MB