Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T18:30:22.451Z Has data issue: false hasContentIssue false

Natural large-scale structures in the axisymmetric mixing layer

Published online by Cambridge University Press:  20 April 2006

K. B. M. Q. Zaman
Affiliation:
Mechanical Engineering Department, University of Houston, Texas 77004 Present address: NASA-Langley Research Center, Hampton, VA 23665.
A. K. M. F. Hussain
Affiliation:
Mechanical Engineering Department, University of Houston, Texas 77004

Abstract

This paper summarizes results of our investigations on: optimization of conditional sampling technique for eduction of naturally occurring large-scale structures in an axisymmetric mixing layer, comparison of the natural structure with that induced via controlled excitation, and the sensitivity of the educed structure to the excitation amplitude and of the natural coherent structure to Reynolds number and initial condition. Measurements include sectional-plane contours of various structure properties; however, coherent vorticity is the principal measure used in these considerations. All plausible alternative triggering criteria, based on reference velocity signals from fixed probes, were considered in order to arrive at the best practical eduction technique. It is shown that the simple criterion of triggering on the positive peaks of the longitudinal velocity signal derived from the high-speed edge of the mixing layer results in the optimum eduction. The characteristics of the natural structures, educed by the optimum detection criterion, are found to be independent of ReD over the measurement range 5.5 × 104−8 × 105. A mild dependence on the initial condition (viz laminar vs. turbulent) is observed, the structures being more disorganized for the initially laminar boundary-layer case. The educed natural structures agree well with those induced by controlled sinusoidal excitation at low excitation levels; higher levels, however, produce considerably stronger structures.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1980 Phys. Fluids 23, 695.
Armstrong, R. R., Michalke, A. & Fuchs, H. V. 1977 AIAA J. 15, 1011.
Bradshaw, P. 1966 J. Fluid Mech. 26, 225.
Browand, F. K. & Laufer, J. 1975 Turb. Liquids, Univ. Missouri-Rolla, 5, 333.
Browand, F. K. & Weidman, P. D. 1976 J. Fluid Mech. 76, 127.
Bruun, H. H. 1977 J. Fluid Mech. 64, 775.
Bruun, H. H. 1979 Proc. R. Soc. Lond. A, 367, 193.
Clark, A. R. 1979 Ph.D. thesis, Univ. Houston.
Crow, S. C. & Champagne, F. H. 1971 J. Fluid Mech. 48, 547.
Davies, P. O. A. L. & Baxter, D. R. J. 1978 In Structure and Mechanisms of Turbulence I (ed. H. Fiedler). Lecture Notes in Physics, vol. 75, p. 125. Springer.
Drubka, R. E. & Nagib, H. M. 1981 IIT Fluid & Heat Transfer Rep. R812.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981 J. Fluid Mech. 110, 39.
Hussain, A. K. M. F. & Zedan, M. F. 1978 Phys. Fluids 21, 1100.
Kibens, V. 1980 AIAA J. 18, 434.
Ko, N. W. M. & Davies, P. O. A. L. 1971 J. Fluid Mech. 50, 49.
Lau, J. C. 1979 Proc. R. Soc. Lond. A, 368, 547.
Lau, J. C., Fisher, M. J. & Fuchs, H. V. 1972 J. Sound Vib. 22, 379.
Mattingly, G. E. & Chang, C. C. 1974 J. Fluid Mech. 65, 541.
Michalke, A. 1965 J. Fluid Mech. 23, 521.
Moore, C. J. 1977 J. Fluid Mech. 80, 321.
Petersen, R. A. 1978 J. Fluid Mech. 89, 469.
Sokolov, M., Hussain, A. K. M. F., Kleis, S. J. & Husain, Z. D. 1980 J. Fluid Mech. 98, 65.
Widnall, S. 1975 Ann. Rev. Fluid Mech. 7, 141.
Yule, A. J. 1978 J. Fluid Mech. 89, 413.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 J. Fluid Mech. 101, 449.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 J. Fluid Mech. 112, 379.
Zilberman, M., Wygnanski, I. & Kaplan, R. E. 1977 Phys. Fluids Suppl. 20, S258.