Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T21:16:51.005Z Has data issue: false hasContentIssue false

Observations on turbulent-drag reduction in a dilute suspension of clay in sea-water

Published online by Cambridge University Press:  29 March 2006

Giselher Gust
Affiliation:
Institut für Meereskunde an der Universität Kiel, 23 Kiel, Düsternbrooker Weg 20, Germany Present address: University of Hawaii at Manoa, Department of Oceanography, 2525 Correa Road, Honolulu, Hawaii 96822.

Abstract

Hot-wire anemometer measurements have been made in a dilute sea-water/claymineral suspension. For fully developed turbulent flows in an open channel with a smooth mud (from the North Sea) bottom, mean streamwise velocity profiles were measured for Reynolds numbers between 5400 and 27 800 (i.e. non-eroding and eroding flow rates) and compared with Newtonian flows under the same experimental conditions. For the clay-mineral suspensions, measurements of the kinematic viscosity v, Kármán's constant k and the mean streamwise velocity $\overline{u}$ of the logarithmic layer seemed to verify a Newtonian flow structure. Although the distributions of concentration showed no substantial increase towards the wall, it was found that beneath this Newtonian core there existed a viscous sublayer whose thickness was enhanced by a factor of 2–5. The friction velocity u* determined by the gradient method in the viscous sublayer was reduced by as much as 40 %. The mean flow structure exhibited an additional new layer in the region 10 < y+ < 30.

The measurements indicate that turbulent-drag reduction occurs for the experimental clay-mineral suspension at non-eroding and also at eroding velocities. Agglomeration of suspended clay-mineral particles is suggested as possible explanation of this phenomenon.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakewell, H. P. & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow Phys. Fluids, 10, 1880.Google Scholar
Bark, F. H., Hinch, E. J. & Landahl, M. T. 1975 Drag reduction in turbulent flow due to additives: a report on Euromech 52. J. Fluid Mech. 68, 129.Google Scholar
Bogue, D. C. & Metzner, A. B. 1963 Velocity profiles in turbulent pipe flow Ind. & Engng Chem. Fund. 2, 143.Google Scholar
Eckelmann, H. 1970 Experimentelle Unterschungen in einer turbulenten Kanalströmung mit starken viskosen Wandschichten. Mitt. Max-Planck-Inst. Strömungsforschung Aerodyn. Versuchsanstalt, Göttingen, no. 48.Google Scholar
Einstein, A. 1906 Neue Bestimmung der Moleküldimension Ann. Phys. 19, 289.Google Scholar
Einstein, H. A. & Krone, R. B. 1962 Experiments to determine modes of cohesive sediment transport in salt water J. Geophys. Res. 67, 1451.Google Scholar
Frey, H. R. & Mcnally, G. J. 1973 Limitations of conical hot platinum film probes as oceanographic flow sensors J. Geophys. Res. 78, 1449.Google Scholar
Freymuth, P. 1967 Feedback control theory Rev. Sci. Instrum. 38, 677.Google Scholar
Gust, G. 1975 Untersuchungen zu sedimentologisch-hydrodynamischen Wechselwirkungen in einer turbulenten Tidenströmung mit suspendiertem Schlick (Meßprogramm ‘Schliwe 1’, Juli 1972). Rep. Sonderforschungsbereich 95, Universität Kiel, no. 11.Google Scholar
Hinch, E. J. & Ziabicki, A. 1974 The mechanics of fluid suspensions and polymer solutions: a report on Euromech 49. J. Fluid Mech. 66, 1.Google Scholar
Hunt, J. N. 1954 The turbulent transport of suspended sediment in open channels. Proc. Roy. Soc. A 224, 322.Google Scholar
IPPEN, A. T. 1971 A. T. 1971 A new look at sedimentation in turbulent streams J. Boston Soc. Civ. Engrs, 58, 131.Google Scholar
Jayaraman, V. V. 1970 Resistance studies on smooth open channels Proc. A.S.C.E., J. Hydraul. Div. 96, 1129.Google Scholar
Kazanskij, I., Bruhl, H. & Hinch, J. 1974 Influence of added fine particles on the flow structure and the pressure losses in sand-water-mixture. Hydrotransport 3, Golden, Colorado, paper D2.
Kemp, P. H. & Grass, A. J. 1967 The measurement of turbulent velocity fluctuations close to a boundary in open channel flow Proc. 12th Congress I.A.H.R. 2, 201.Google Scholar
Klatt, F. 1973 A study of systematic errors in measurements with the constant-temperature anemometer in high-turbulence flows with and without hot-wire signal linearization DISA Inf. 14, 25.Google Scholar
Kratky, O., Leopold, H. & Stabinger, H. 1969 Dichtemessung an Flüssigkeiten und Gasen auf 10−6 g/cm3 bei 0,6 cm3 Präparatvolumen. Z. angew. Phys. 27, 273.Google Scholar
Landahl, M. T. 1973 Drag reduction by polymer addition. Proc. 13th IUTAM Cong. (ed. E. Becker & G. R. Mikhailov), p. 177. Springer.
Laufer, J. 1954 The structure of turbulence in fully developed pipe flow. N.A.C.A. Tech. Rep. no. 1174.Google Scholar
Lumley, J. L. 1969 Drag reduction by additives Ann. Rev. Fluid Mech. 1, 367.Google Scholar
Mcquivey, R. S. & Richardson, E. V. 1969 Some turbulence measurements in openchannel flow Proc. A.S.C.E., J. Hydraul. Div. 95, 209.Google Scholar
Migniot, C. 1968 Etude des propriétés physiques de différents sédiments très fins et leur comportements sous des actions hydrodynamiques Houille Blanche, 23, 591.Google Scholar
Oldroyd, J. G. 1949 A suggested method of detecting wall-effects in turbulent flow through tubes. Proc. 1st Int. Cong. Rheol. vol. 2, p. 130. North Holland.
Olphen, H. Van 1963 An Introduction to Clay Colloid Chemistry Interscience.
Pazwash, H. & Robertson, J. M. 1971 Fluid-dynamic consideration of bottom materials Proc. A.S.C.E., J. Hydraul. Div. 97, 1317.Google Scholar
Radin, I., Zakin, J. & Patterson, G. K. 1973 Drag reduction of solid-liquid suspensions in pipe flow Nature, 246, 11.Google Scholar
Schraub, F. A. & Kline, S. J. 1965 A study of the structure of turbulent boundary layers with and without longitudinal pressure gradients. Dept. Mech. Engng, Stanford University, Rep. MD 12.Google Scholar
Seyer, F. A. & Metzner, A. B. 1969 Turbulence phenomena in drag reduction systems A.I.Ch.E. J. 15, 425.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Smoluchovskij, M. Von 1921 In Handbuch der Elektrizität und des Magnetismus II (ed. Graetz), p. 420. Leipzig.
Terwindt, J. H. J., Breusers, H. N. C. & Svasek, J. N. 1968 Experimental investigation on the erosion-sensitivity of a sand-clay lamination Sedimentology, 11, 105.Google Scholar
Toms, B. A. 1949 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proc. 1st Int. Cong. Rheol. vol. 2, p. 135. North Holland.
Virk, P. S. 1971 An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules J. Fluid Mech. 45, 417.Google Scholar
Zandi, I. 1967 Decreased heat losses in raw water conduits J. Am. Waterworks Ass. 59, 213.Google Scholar