Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-20T01:11:51.125Z Has data issue: false hasContentIssue false

On the deformation and drag of a type-A multiple drop at low Reynolds number

Published online by Cambridge University Press:  20 April 2006

P. O. Brunn
Affiliation:
Department of Chemical Engineering and Applied Chemistry, Columbia University, New York, NY 10027
T. Roden
Affiliation:
Department of Chemical Engineering and Applied Chemistry, Columbia University, New York, NY 10027

Abstract

The dynamics of a perfectly symmetric type-A multiple drop is studied. Up to first order in Reynolds number a force balance predicts the size ratios of the two constituents of such a drop to be unique for each system. Inertial effects are shown (a) to be destabilizing and (b) to exclude the possibility of obtaining perfectly concentric type-A droplets in a diffusion column. This latter conclusion is strengthened further by the sedimentation results.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arts, R. 1962 Vectors, Tensors and the Basic Equations of Fluid Mechanics, chap. 10. Prentice-Hall.
Brodin, A. F., Kavaliunas, D. R. & Frank, S. G. 1978 Prolonged drug release from multiple emulsions. Acta Pharma. Suec. 15, 112.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.
Florence, A. T. & Whitehill, D. 1981 Some features of breakdown in water-in-oil-in-water multiple emulsions. J. Coll. Interface Sci. 79, 243256.Google Scholar
Halwachs, W., Flashel, E. & Schungel, K. 1980 Liquid membrane transport – a highly selective separation process for organic solutions. J. Membrane Sci. 6, 3334.Google Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics, §4.23. Noordhoff.
Johnson, R. E. & Sadhal, S. S. 1983 Stokes flow past bubbles and drops partially coated with a thin films. Part 2. Thin films with internal circulation – a perturbation solution. J. Fluid Mech. 132, 295318.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn, chap. 11. Cambridge University Press.
Li, N. N. 1971 Separation of hydrocarbons by liquid membrane permeation. Ind. Engng Chem. Process Des. Dev. 10, 215221.Google Scholar
Li, N. N. & Asher, W. J. 1973 Blood oxygenation by liquid membrane permeation. Chem. Engng in Medicine, Adv. Chem. Ser. 118, 114.Google Scholar
Li, N. N. & Shrier, A. L. 1972 Recent developments in separation science, vol. I, p. 163. Chemical Rubber Co.
Martin, T. P. & Davies, G. A. 1976 The extraction of copper from dilute aqueous solutions using a liquid membrane process. Hydrometall. 2, 315334.Google Scholar
Mercier, J. L., Da Cunha, F. M., Teixeira, J. C. & Scofield, M. P. 1974 Influence of enveloping water layer on the rise of air bubbles in Newtonian fluids. Trans. ASME E: J. Appl. Mech. 96, 2934.Google Scholar
Mori, Y. M., Komotori, K., Higeta, K. & Inada, J. 1977 Rising behavior of air bubbles in superposed liquid layers. Can. J. Chem. Engng, 55, 912.Google Scholar
Rushton, R. & Davis, G. A. 1983 Settling of encapsulated drops at low Reynolds numbers. Intl J. Multiphase Flow 9, 337342.Google Scholar
Selecki, A. & Gradon, L. 1972 Über den Verdampfungsmechanismus eines sich in einer nicht mischbaren Flüssigkeit bewegenden Flüssigkeitstroptens. Chem. Ing. Tech. 44, 10771081.Google Scholar
Sideman, S. & Taitel, Y. 1964 Direct contact heat transfer with change of phase: evaporation of drops in an immiscible liquid medium. Intl J. Heat Mass Transfer 7, 12731279.Google Scholar
Taylor, J. D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18, 466476.Google Scholar
Ulbrecht, J. J., Stroeve, P. & Prabodh, P. 1982 Behavior of double emulsions in shear flows. Rheol. Acta 21, 593597.Google Scholar