Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T22:21:40.514Z Has data issue: false hasContentIssue false

On the effect of active flow control on the meandering of a wing-tip vortex

Published online by Cambridge University Press:  08 June 2020

Marouen Dghim*
Affiliation:
Department of Mechanical Engineering, Université de Sherbrooke, 2500 boulevard de l’Université, Sherbrooke, QC, J1K 2R1, Canada Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, 713 General Crerar Crescent, Kingston, ON, K7K 7B4, Canada
Mohsen Ferchichi
Affiliation:
Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, 713 General Crerar Crescent, Kingston, ON, K7K 7B4, Canada
Hachimi Fellouah
Affiliation:
Department of Mechanical Engineering, Université de Sherbrooke, 2500 boulevard de l’Université, Sherbrooke, QC, J1K 2R1, Canada
*
Email address for correspondence: Marouen.Dghim@USherbrooke.ca

Abstract

The development of a wing-tip vortex of a rectangular, square-tipped wing having a NACA 0012 airfoil at a chord Reynolds number $Re_{c_{w}}=2\times 10^{5}$, under the effect of synthetic jet actuation, was experimentally studied. Five control configurations were considered: case C1 with momentum coefficient $C_{\unicode[STIX]{x1D707}}=0.001$ and actuation frequency $F^{+}=0.075$; case C2 with $C_{\unicode[STIX]{x1D707}}=0.001$ and $F^{+}=0.15$; case C3 with $C_{\unicode[STIX]{x1D707}}=0.001$ and $F^{+}=0.3$; case C4 with $C_{\unicode[STIX]{x1D707}}=0.001$ and $F^{+}=0.6$; and case C5 with $C_{\unicode[STIX]{x1D707}}=0.001$ and $F^{+}=1.2$. Under the most effective configuration, case C3, the vortex was stretched and appeared to be diffuse with a nearly 40 % decrease in the peak circumferential velocity and 50 % decrease in the core axial vorticity. The vortex core radius largely broadened suggesting that the lower-frequency control configuration allowed the synthetic jet to travel larger distances into the vortex bringing turbulent structures within its core resulting in increased mixing and subsequently a more diffuse vortex.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. C. C., Estejab, B., Robert, M. & Tavoularis, S. 2011 Long-wavelength vortex motion induced by free-stream turbulence. In TSFP Digital Library Online, Begel House Inc.Google Scholar
Bailey, S. C. C. & Tavoularis, S. 2008 Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence. J. Fluid Mech. 601, 281315.CrossRefGoogle Scholar
Bailey, S. C. C., Tavoularis, S. & Lee, B. H. K. 2006 Effects of freestream turbulence on wing-tip vortex formation and near field. J. Aircraft 43 (5), 12821291.CrossRefGoogle Scholar
Baker, G. R., Barker, S. J., Bofah, K. K. & Saffman, P. G. 1974 Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65 (2), 325336.CrossRefGoogle Scholar
Balint, J.-L., Vukoslavcevic, P. & Wallace, J. M. 1990 The transport of enstrophy in a turbulent boundary layer. In Near-Wall Turbulence (A91-33726 13–34), pp. 932950. Hemisphere Publishing Corp.Google Scholar
Bandyopadhyay, P. R., Ash, R. L. & Stead, D. J. 1991 The organized nature of a turbulent trailing vortex. AIAA Paper 10, 16271633.CrossRefGoogle Scholar
Beninati, M. L. & Marshall, J. S. 2005 An experimental study of the effect of free-stream turbulence on a trailing vortex. Exp. Fluids 38 (2), 244257.CrossRefGoogle Scholar
Beresh, S. J., Henfling, J. F. & Spillers, R. W. 2010 Meander of a fin trailing vortex and the origin of its turbulence. Exp. Fluids 49 (3), 599611.CrossRefGoogle Scholar
Beresh, S. J., Wagner, J. L. & Pruett, B. O. M. 2012 Particle image velocimetry of a three-dimensional supersonic cavity flow. AIAA Paper 30, 2012.Google Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Birch, D. & Lee, T. 2005 Investigation of the near-field tip vortex behind an oscillating wing. J. Fluid Mech. 544, 201241.CrossRefGoogle Scholar
Birch, D., Lee, T., Mokhtarian, F. & Kafyeke, F. 2004 Structure and induced drag of a tip vortex. J. Aircraft 41 (5), 11381145.CrossRefGoogle Scholar
Bulathsinghala, D. S., Jackson, R., Wang, Z. & Gursul, I. 2017 Afterbody vortices of axisymmetric cylinders with a slanted base. Exp. Fluids 58 (5), 60.CrossRefGoogle Scholar
Cattafesta, L. N. III & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.CrossRefGoogle Scholar
Cerretelli, C. & Williamson, C. H. K. 2003 The physical mechanism for vortex merging. J. Fluid Mech. 475, 4177.CrossRefGoogle Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.CrossRefGoogle Scholar
Chaudhari, M., Verma, G., Puranik, B. & Agrawal, A. 2009 Frequency response of a synthetic jet cavity. Exp. Therm. Fluid Sci. 33 (3), 439448.Google Scholar
Chow, J. S., Zilliac, G. G. & Bradshaw, P. 1997 Mean and turbulence measurements in the near field of a wingtip vortex. AIAA J. 35 (10), 15611567.CrossRefGoogle Scholar
Corsiglia, V. R., Schwind, R. G. & Chigier, N. A. 1973 Rapid scanning, three-dimensional hot-wire anemometer surveys of wing-tip vortices. J. Aircraft 10 (12), 752757.CrossRefGoogle Scholar
Cotel, A. J. & Breidenthal, R. E. 1999 Turbulence inside a vortex. Phys. Fluids 11 (10), 30263029.CrossRefGoogle Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Cucitore, R., Quadrio, M. & Baron, A. 1999 On the effectiveness and limitations of local criteria for the identification of a vortex. Eur. J. Mech. (B/Fluids) 18 (2), 261282.CrossRefGoogle Scholar
Degani, D., Seginer, A. & Levy, Y. 1990 Graphical visualization of vortical flows by means of helicity. AIAA J. 28 (8), 13471352.Google Scholar
Del Pino, C., Lopez-Alonso, J. M., Parras, L. & Fernandez-Feria, R. 2011a Dynamics of the wing-tip vortex in the near field of a NACA 0012 aerofoil. Aeronaut. J. 115 (1166), 229239.CrossRefGoogle Scholar
Del Pino, C., Parras, L., Felli, M. & Fernandez-Feria, R. 2011b Structure of trailing vortices: comparison between particle image velocimetry measurements and theoretical models. Phys. Fluids 23 (1), 013602.CrossRefGoogle Scholar
Devenport, W. J., Rife, M. C., Liapis, S. I. & Follin, G. J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.CrossRefGoogle Scholar
Dghim, M., Ferchichi, M. & Fellouah, H. 2017 Stereoscopic PIV investigation of the effect of synthetic jet actuation on a wing tip vortex. In 35th AIAA Applied Aerodynamics Conference, CO, p. 3038. AIAA.Google Scholar
Dghim, M., Ferchichi, M., Graveline, S. & BenChiekh, M. 2014 Control of wing tip vortex structure using fluidic actuation. In 7th AIAA Flow Control Conference, Atlanta, GA, p. 2792. AIAA.Google Scholar
Dghim, M., Ferchichi, M., Perez, R. E. & BenChiekh, M. 2016 Near wake development of a wing tip vortex under the effect of synthetic jet actuation. Aerosp. Sci. Technol. 54, 88107.CrossRefGoogle Scholar
Edstrand, A. M., Davis, T. B., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2016 On the mechanism of trailing vortex wandering. J. Fluid Mech. 801, R1.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (9), 1422.CrossRefGoogle Scholar
Grant, I. 1997 Particle image velocimetry: a review. Proc. Inst. Mech. Engrs C 211 (1), 5576.Google Scholar
Greenblatt, D. 2012 Fluidic control of a wing tip vortex. AIAA J. 50 (2), 375386.CrossRefGoogle Scholar
Gursul, I. & Xie, W. 1999 Buffeting flows over delta wings. AIAA J. 37 (1), 5865.CrossRefGoogle Scholar
Heyes, A. L., Jones, R. F. & Smith, D. A. R. 2004 Wandering of wing-tip vortices. In Proceedings of 12th International Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, paper 35 (3).Google Scholar
Heyes, A. L. & Smith, D. A. R. 2004 Spatial perturbation of a wing-tip vortex using pulsed span-wise jets. Exp. Fluids 37 (1), 120127.CrossRefGoogle Scholar
Hoffmann, E. R. & Joubert, P. N. 1963 Turbulent line vortices. J. Fluid Mech. 16 (3), 395411.CrossRefGoogle Scholar
Holman, R., Utturkar, Y., Mittal, R., Smith, B. L. & Cattafesta, L. 2005 Formation criterion for synthetic jets. AIAA J. 43 (10), 2110.CrossRefGoogle Scholar
Holloway, A. G. L. & Richardson, S. 2007 Development of a trailing vortex formed with spanwise tip jets. J. Aircraft 44 (3), 845857.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, 193–208.Google Scholar
Jacquin, L., Fabre, D., Geffroy, P. & Coustols, E. 2001 The properties of a transport aircraft extended near field: an experimental study. In AIAA Conference Proceedings, Reno, NV, p. 1038. AIAA.Google Scholar
Jacquin, L., Fabre, D., Sipp, D., Theofilis, V. & Vollmers, H. 2003 Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7 (8), 577593.CrossRefGoogle Scholar
Jacquin, L. & Pantano, C. 2002 On the persistence of trailing vortices. J. Fluid Mech. 471, 159168.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Lumley, J. L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation, pp. 166178. Nauka.Google Scholar
Margaris, P. & Gursul, I. 2006 Wing tip vortex control using synthetic jets. Aeronaut. J. 110 (1112), 673681.CrossRefGoogle Scholar
Margaris, P. & Gursul, I. 2010 Vortex topology of wing tip blowing. Aerosp. Sci. Technol. 14 (3), 143160.CrossRefGoogle Scholar
Martin, P. B., Leishman, J. G., Pugliese, G. J. & Anderson, S. L. 2000 Stereoscopic PIV measurements in the wake of a hovering rotor. In AHS International, Annual Forum, 56th, Virginia Beach, VA, pp. 402420.Google Scholar
McAlister, K. W. 2004 Rotor wake development during the first revolution. J. Amer. Helicopter Soc. 49 (4), 371390.CrossRefGoogle Scholar
Mohammed-Taifour, A. & Weiss, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid Mech. 799, 383412.CrossRefGoogle Scholar
Mousley, S. W. P. & Vino, G. 2004 The development and use of dynamic pressure probes with extended cones of acceptance (ECA). Development 13, 17.Google Scholar
Mula, S. M., Stephenson, J. H., Tinney, C. E. & Sirohi, J. 2013 Dynamical characteristics of the tip vortex from a four-bladed rotor in hover. Exp. Fluids 54 (10), 1600.CrossRefGoogle Scholar
Mula, S. M. & Tinney, C. E. 2014 Classical and snapshot forms of the POD technique applied to a helical vortex filament. In 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, p. 3257. AIAA.Google Scholar
Mula, S. M. & Tinney, C. E. 2015 A study of the turbulence within a spiralling vortex filament using proper orthogonal decomposition. J. Fluid Mech. 769, 570589.CrossRefGoogle Scholar
Phillips, W. R. C. 1981 The turbulent trailing vortex during roll-up. J. Fluid Mech. 105, 451467.CrossRefGoogle Scholar
Ragab, S. & Sreedhar, M. 1995 Numerical simulation of vortices with axial velocity deficits. Phys. Fluids 7 (3), 549558.CrossRefGoogle Scholar
Ramaprian, B. R. & Zheng, Y. 1997 Measurements in rollup region of the tip vortex from a rectangular wing. AIAA J. 35 (12), 18371843.CrossRefGoogle Scholar
Ramasamy, M., Johnson, B., Huismann, T. & Leishman, J. G. 2009 Digital particle image velocimetry measurements of tip vortex characteristics using an improved aperiodicity correction. J. Amer. Helicopter Soc. 54 (1), 1200412004.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.CrossRefGoogle Scholar
Rokhsaz, K., Foster, S. R. & Miller, L. S. 2000 Exploratory study of aircraft wake vortex filaments in a water tunnel. J. Aircraft 37 (6), 10221027.CrossRefGoogle Scholar
Roy, C. & Leweke, T. 2008 Experiments on vortex meandering. In FAR-Wake Technical Report AST4-CT-2005-012238, CNRS-IRPHE, also Presented in International Workshop on Fundamental Issues Related to Aircraft Trailing Wakes, pp. 2729.Google Scholar
Roy, C., Leweke, T., Thompson, M. C. & Hourigan, K. 2011 Experiments on the elliptic instability in vortex pairs with axial core flow. J. Fluid Mech. 677, 383416.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Shah, P. N., Atsavapranee, P., Hsu, T. Y., Wei, T. & McHugh, J. 1999 Turbulent transport in the core of a trailing half-delta-wing vortex. J. Fluid Mech. 387, 151175.CrossRefGoogle Scholar
Shekarriz, A., Fu, T. C., Katz, J. & Huang, T. T. 1993 Near-field behavior of a tip vortex. AIAA J. 31 (1), 112118.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Sousa, J. M. M. & Pereira, J. C. F. 2000 Rollup region of a turbulent trailing vortex issued from a blade with flow separation. Exp. Therm. Fluid Sci. 20 (3), 150161.Google Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30 (1), 107138.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Van Jaarsveld, J. P. J., Holten, A. P. C., Elsenaar, A., Trieling, R. R. & Van Heijst, G. J. F. 2011 An experimental study of the effect of external turbulence on the decay of a single vortex and a vortex pair. J. Fluid Mech. 670, 214239.CrossRefGoogle Scholar
Waldman, R. M. & Breuer, K. S. 2012 Accurate measurement of streamwise vortices using dual-plane PIV. Exp. Fluids 53 (5), 14871500.CrossRefGoogle Scholar
van der Wall, B. G. & Richard, H. 2006 Analysis methodology for 3C-PIV data of rotary wing vortices. Exp. Fluids 40 (5), 798812.CrossRefGoogle Scholar
Westerweel, J. 1994 Efficient detection of spurious vectors in particle image velocimetry data. Exp. Fluids 16 (3–4), 236247.CrossRefGoogle Scholar
Widnall, S. E., Bliss, D. & Zalay, A. 1971 Theoretical and experimental study of the stability of a vortex pair. In Aircraft Wake Turbulence and its Detection, pp. 305338. Springer.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar