Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-22T17:17:14.910Z Has data issue: false hasContentIssue false

On the propagation of weak and moderately strong, curved shock waves

Published online by Cambridge University Press:  20 April 2006

Frank Obermeier
Affiliation:
Max-Planck-Institut für Stromungsforschung, D-3400 Göttingen, Federal Republic of Germany

Abstract

In this paper we concern ourselves with the theoretical description of curved converging shock waves, where nonlinear interaction effects, between the shock fronts and the flow behind them, and refraction effects are equally important. In a non-viscous, isoenergetic and isentropic flow the problem can be described by a nonlinear wave equation for the pressure field. This equation then admits an analytical solution with the help of the method of strained coordinates provided that the nonlinear terms contain only derivatives with respect to two independent variables. This restrictive condition is approximately fulfilled if the incoming wave is only slightly curved.

Replacing in the solution the strained coordinates – which themselves depend on the solution – by physical coordinates, we get an accurate description of the transition from the shock pattern obtained by the geometric-acoustics approach (very weak shocks) to the pattern determined by Whitham's shock dynamics (strong shocks). Furthermore, the solution describes the complete flow field and agrees very favourably with experimental data by Sturtevant & Kulkarny.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.
Buchal, R. N. & Keller, J. B. 1960 Communs Pure Appl. Math. 13, 85.
Cramee, M. S. & Seebass, A. R. 1978 J. Fluid Mech. 8, 209.
Debye, P. 1909 Ann. Physik 30, 755.
Fung, K.-Y. 1980 SIAM J. Appl. Math. 39, 355.
Guiraud, J. P. 1965 J. Méc. 4, 215.
Hayes, W. D. 1968 Similarity rules for nonlinear acoustic propagation through a caustic. In Proc. 2nd Conf. on Sonic Boom Research. NASA SP-180, p. 165.
Lighthill, M. J. 1950 Q. J. Mech. Appl. Math. 3, 303.
Obermeier, F. 1976 Das Verhalten eines Überschallknalles in der Umgebung einer Kaustik. Max-Planck-Inst. f. Strömungsforschung, Bericht 28/1976.
Rott, N. 1980 Z. Fluguriss. 4, 185.
Sanai, M., Toong, T.-Y. & Pierce, A. D. 1976 J. Acoust. Soc. Am. 59, 513.
Seebass, A. R. 1971 Nonlinear acoustic behaviour at a caustic. In Proc. 3rd Conf. on Sonic Boom Research. NASA SP-255, p. 87.
Sturtevant, B. & Kulkarny, V. A. 1976 J. Fluid Mech. 73, 651.
Vallee, J. 1969 Opération Jericho–Virage. Rapport d'Etude no. 277, Centre d'Essais en Vol. Annexe d'Istres.Google Scholar
Wanner, J. C. L., Vallee, J., Vivier, C. & Thery, C. 1972 J. Acoust. Soc. Am. 52, 13.
Whitham, G. B. 1957 J. Fluid Mech. 2, 145.
Whitham, G. B. 1959 J. Fluid Mech. 5, 369.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience