Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T08:29:29.407Z Has data issue: false hasContentIssue false

On the stability of inhomogeneous fluids under acoustic fields

Published online by Cambridge University Press:  30 May 2023

Varun Kumar Rajendran
Affiliation:
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
S.P. Aravind Ram
Affiliation:
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
Karthick Subramani*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
*
Email address for correspondence: karthick@iiitdm.ac.in

Abstract

In this work, we present the stability theory for inhomogeneous fluids subjected to standing acoustic fields. Starting from the first principles, the stability criterion is established for two fluids of different acoustic impedance (product of density and speed of sound of the fluid) separated by a plane interface. Through stability theory and numerical simulations, we show that, in the presence of interfacial tension, the relocation of high-impedance fluid from the pressure anti-node to the pressure node occurs when the acoustic force overcomes the interfacial tension force, which is in agreement with recent acoustic relocation experiments in the microchannel. Furthermore, we establish an acoustic Bond number that characterizes stable ($Bo_{a}<1$) and relocation ($Bo_{a}>1$) regimes. Remarkably, it is found that the critical acoustic energy density required for relocation can be significantly reduced by increasing the height of the channel which could help in designing acoustofluidic devices that handle immiscible fluids.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W. & Huang, T.J. 2016 Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085.CrossRefGoogle ScholarPubMed
Augustsson, P., Karlsen, J.T., Su, H.-W., Bruus, H. & Voldman, J. 2016 Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7 (1), 19.CrossRefGoogle ScholarPubMed
Baudoin, M., Thomas, J.-L., Al Sahely, R., Gerbedoen, J.-C., Gong, Z., Sivery, A., Matar, O.B., Smagin, N., Favreau, P. & Vlandas, A. 2020 Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat. Commun. 11, 4244.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Christakou, A.E., Ohlin, M., Vanherberghen, B., Khorshidi, M.A., Kadri, N., Frisk, T., Wiklund, M. & Önfelt, B. 2013 Live cell imaging in a micro-array of acoustic traps facilitates quantification of natural killer cell heterogeneity. Integr. Biol. 5 (4), 712719.CrossRefGoogle Scholar
Collins, D.J., Morahan, B., Garcia-Bustos, J., Doerig, C., Plebanski, M. & Neild, A. 2015 Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686.CrossRefGoogle ScholarPubMed
Deshmukh, S., Brzozka, Z., Laurell, T. & Augustsson, P. 2014 Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis. Lab on a Chip 14 (17), 33943400.CrossRefGoogle ScholarPubMed
Friend, J. & Yeo, L.Y. 2011 Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 (2), 647704.CrossRefGoogle Scholar
Gautam, G.P., Gurung, R., Fencl, F.A. & Piyasena, M.E. 2018 Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis. Anal. Bioanal. Chem. 410 (25), 65616571.CrossRefGoogle ScholarPubMed
Hemachandran, E., Hoque, S.Z., Laurell, T. & Sen, A.K. 2021 Reversible stream drop transition in a microfluidic coflow system via on demand exposure to acoustic standing waves. Phys. Rev. Lett. 127 (13), 134501.CrossRefGoogle Scholar
Hemachandran, E., Karthick, S., Laurell, T. & Sen, A.K. 2019 Relocation of coflowing immiscible liquids under acoustic field in a microchannel. Europhys. Lett. 125 (5), 54002.CrossRefGoogle Scholar
Hoque, S.Z. & Sen, A.K. 2023 Ultrasound resonance in coflowing immiscible liquids in a microchannel. Phys. Rev. E 107 (3), 035104.CrossRefGoogle Scholar
Iranmanesh, I., Ramachandraiah, H., Russom, A. & Wiklund, M. 2015 On-chip ultrasonic sample preparation for cell based assays. RSC Adv. 5 (91), 7430474311.CrossRefGoogle Scholar
Jayakumar, S. & Subramani, K. 2022 An investigation of acoustic relocation phenomenon in a microchannel under acoustic fields. Phys. Fluids 34 (9), 092002.CrossRefGoogle Scholar
Karlsen, J.T., Augustsson, P. & Bruus, H. 2016 Acoustic force density acting on inhomogeneous fluids in acoustic fields. Phys. Rev. Lett. 117 (11), 114504.CrossRefGoogle ScholarPubMed
Karlsen, J.T. & Bruus, H. 2017 Acoustic tweezing and patterning of concentration fields in microfluidics. Phys. Rev. Appl. 7 (3), 034017.CrossRefGoogle Scholar
Karlsen, J.T., Qiu, W., Augustsson, P. & Bruus, H. 2018 Acoustic streaming and its suppression in inhomogeneous fluids. Phys. Rev. Lett. 120 (5), 054501.CrossRefGoogle ScholarPubMed
Karthick, S. & Sen, A.K. 2018 Improved understanding of acoustophoresis and development of an acoustofluidic device for blood plasma separation. Phys. Rev. Appl. 10 (3), 034037.CrossRefGoogle Scholar
Lakshmanan, A., Jin, Z., Nety, S.P., Sawyer, D.P., Lee-Gosselin, A., Malounda, D., Swift, M.B., Maresca, D. & Shapiro, M.G. 2020 Acoustic biosensors for ultrasound imaging of enzyme activity. Nat. Chem. Biol. 16, 988996.CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Li, P., et al. 2015 Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112 (16), 49704975.CrossRefGoogle ScholarPubMed
Lu, X., Martin, A., Soto, F., Angsantikul, P., Li, J., Chen, C., Liang, Y., Hu, J., Zhang, L. & Wang, J. 2019 Parallel label-free isolation of cancer cells using arrays of acoustic microstreaming traps. Adv. Mater. Technol. 4 (2), 1800374.CrossRefGoogle Scholar
Mitas, K.D.J., Manor, O. & Thiele, U. 2021 Bifurcation study for a surface-acoustic-wave-driven meniscus. Phys. Rev. Fluids 6 (9), 094002.CrossRefGoogle Scholar
Muñoz, J., Arcos, J., Campos-Silva, I., Bautista, O. & Méndez, F. 2021 Slippage effect on interfacial destabilization driven by standing surface acoustic waves under hydrophilic conditions. Phys. Rev. Fluids 6 (2), 024002.CrossRefGoogle Scholar
Nath, A. & Sen, A.K. 2019 Acoustic behavior of a dense suspension in an inhomogeneous flow in a microchannel. Phys. Rev. Appl. 12 (5), 054009.CrossRefGoogle Scholar
Pothuri, C., Azharudeen, M. & Subramani, K. 2019 Rapid mixing in microchannel using standing bulk acoustic waves. Phys. Fluids 31 (12), 122001.CrossRefGoogle Scholar
Rajendran, V.K., Jayakumar, S., Azharudeen, M. & Subramani, K. 2022 Theory of nonlinear acoustic forces acting on inhomogeneous fluids. J. Fluid Mech. 940, A32.CrossRefGoogle Scholar
Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T.J. 2022 Acoustofluidics for biomedical applications. Nat. Rev. Meth. Primers 2 (1), 30.CrossRefGoogle Scholar
Shi, J., Huang, H., Stratton, Z., Huang, Y. & Huang, T.J. 2009 Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab on a Chip 9 (23), 33543359.CrossRefGoogle Scholar
Van Assche, D., Reithuber, E., Qiu, W., Laurell, T., Henriques-Normark, B., Mellroth, P., Ohlsson, P. & Augustsson, P. 2020 Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate. Sci. Rep. 10, 3670.CrossRefGoogle ScholarPubMed
Wu, M., Ozcelik, A., Rufo, J., Wang, Z., Fang, R. & Huang, T.J. 2019 Acoustofluidic separation of cells and particles. Microsyst. Nanoengng 5 (1), 118.Google ScholarPubMed
Xie, Y., Rufo, J., Zhong, R., Rich, J., Li, P., Leong, K.W. & Huang, T.J. 2020 Microfluidic isolation and enrichment of nanoparticles. ACS Nano 14 (12), 1622016240.CrossRefGoogle ScholarPubMed
Zhang, L., Tian, Z., Bachman, H., Zhang, P. & Huang, T.J. 2020 A cell-phone-based acoustofluidic platform for quantitative point-of-care testing. ACS Nano 14 (3), 31593169.CrossRefGoogle ScholarPubMed