Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-08-04T21:04:03.814Z Has data issue: false hasContentIssue false

On the stability of two-dimensional stagnation flow

Published online by Cambridge University Press:  29 March 2006

J. Kestin
Affiliation:
Brown University
R. T. Wood
Affiliation:
Brown University

Abstract

The paper examines the stability of the uniform flow which approaches a two-dimensional stagnation region formed when a cylinder or a two-dimensional blunt body of finite curvature is immersed in a crossflow. It is shown that such a flow is unstable with respect to three-dimensional disturbances. This conclusion is reached on the basis of a mathematical analysis of a simplified form of the disturbance equation for the stream-wise component of the vorticity vector. The ultimate, or stable, flow pattern is governed by a singular Sturm–Liouville problem whose solution possesses a single eigenvalue. The resulting flow is one in which a regularly distributed system of counter-rotating vortices is super-imposed on the basic, Hiemenz-like pattern of streamlines. The spacing of the vortices is a unique function of the characteristics of the flow, and a theoretical estimate for it agrees well with experimental results. The analysis is extended heuristically to include the effect of free-stream turbulence on the spacing.

The problem is similar to the classical Görtler–Hämmerlin study of the stability of stagnation flow against an infinite flat plate, which revealed the existence of a spectrum of eigenvalues for the disturbance equation. The present analysis yields the same result when an infinite radius of curvature is assumed for the blunt body.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brun, E. A., Diep, G. B. & Kestin, J. 1966 Sur un nouveau type des tourbillons longitudinaux dans l’écoulement autour d'un cylindre. Influence de l'angle d'attaque et de la turbulence du courant libre. C.R. Acad. Sci. 263, 742.Google Scholar
Dunford, N. & Schwartz, J. T. 1963 Linear Operators, Part II: Spectral Theory. New York: Interscience.
Görtler, H. 1940 Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Nachr. Wiss. Ges. Gottingen, Math. Phys. Klasse, N.F. 2, 1.Google Scholar
Görtler, H. 1955 Dreidimensionale Instabilität der ebenen Staupunktströmung gegen-über wirbelartigen Strömungen. Fünfzig Jahre Grenzschichtforschung (ed. H. Görtler & W. Tollmien). Braunschweig: Vieweg.
Hämmerlin, G. 1955 Zur Instabilitätstheorie der ebenen Staupunktströmung. Fünfzig Jahre Grenzschichtforschung (ed. H. Görtler & W. Tollmien). Braunschweig: Vieweg.
Hiemenz, K. 1911 Die Grenzschicht an einem in den gleichförmigen Flüssikeitsstrom eingetauchten geraden Kreisszylinder. Dingl. Polytech. J. 326, 321.Google Scholar
Kayalar, L. 1969 Experimentalle und theoretische Untersuchungen über den Einfluss des Turbulenzgrades auf den Wärmeübergang in der Umgebung des Staupunktes eines Kreiszylinders. Forschung a.d. Gebiete des Ingenieurwesens, 35, 157.Google Scholar
Kestin, J. & Wood, R. T. 1969 Enhancement of stagnation-line heat transfer by turbulence. Progress in Heat Transfer, vol. 2, p. 249.Google Scholar
Kuethe, A. M., Willmarth, W. W. & Crocker, G. H. 1959 Stagnation-point fluctuations on a body of revolution. Phys. Fluids, 2, 714.Google Scholar
Milne-Thomson, L. M. 1960 Theoretical Hydrodynamics (4th ed.). New York: Macmillan.
Piercy, N. A. V. & Richardson, E. G. 1928 The variation of velocity amplitude close to the surface of a cylinder moving through a viscous fluid. Phil. Mag. 6, 970.Google Scholar
Piercy, N. A. V. & Richardson, E. G. 1930 The turbulence in front of a body moving through a viscous fluid. Phil. Mag. 9, 1038.Google Scholar
Sadeh, W. Z. 1968 An investigation of vorticity amplification in stagnation flow. Ph.D. Thesis, Brown University.
Schlichting, H. 1968 Boundary-Layer Theory (6th ed., trans. J. Kestin). New York: McGraw-Hill.
Smith, M. C. & Kuethe, A. M. 1966 Effects of turbulence on laminar skin friction and heat transfer. Phys. Fluids, 9, 2337.Google Scholar
Sutera, S. P., Maeder, P. F. & Kestin, J. 1963 On the sensitivity of heat transfer in the stagnation-point boundary layer to free-stream vorticity. J. Fluid Mech. 16, 497.Google Scholar
Sutera, S. P. 1965 Vorticity amplification in stagnation-point flow and its effect on heat transfer. J. Fluid Mech. 21, 513.Google Scholar
Williams, G. 1968 Enhancement of heat and mass transfer in a stagnation region by free stream vorticity. M.S. Thesis, Brown University.
Note added in proof. Additional information regarding the experimental work mentioned in this paper can be found in the following two references:
Kestin, J. & Wood, R. T. 1970a The influence of turbulence on mass transfer from cylinders. ASME Paper no. 70-WA/HT-3.Google Scholar
Kestin, J. & Wood, R. T. 1970b The mechanism which causes free stream turbulence to enhance stagnation-line heat and mass transfer. Heat Transfer 1970, Fourth Int.Heat Transfer Conference, vol. II, paper FC 2.7.