Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-31T18:33:23.905Z Has data issue: false hasContentIssue false

Recurrent solutions of Alber's equation for random water-wave fields

Published online by Cambridge University Press:  25 February 2008

M. STIASSNIE
Affiliation:
Faculty of Civil & Environmental Engineering, Technion, Haifa 32000, Israelmiky@tx.technion.ac.il
A. REGEV
Affiliation:
Faculty of Civil & Environmental Engineering, Technion, Haifa 32000, Israelmiky@tx.technion.ac.il
Y. AGNON
Affiliation:
Faculty of Civil & Environmental Engineering, Technion, Haifa 32000, Israelmiky@tx.technion.ac.il

Abstract

The study addresses the linear instability of narrow spectra homogeneous seas and its subsequent evolution in time, subject to inhomogeneous disturbances. Specifically, we study unidirectional spectra, where according to the kinetic equation no spectral evolution is expected. In the region of instability, recurrent evolution is discovered. This recurrence is the stochastic counterpart of the Fermi–Pasta–Ulam recurrence obtained for the cubic Schrödinger equation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Alber, I. E. 1978 The effects of randomness on the stability of two-dimensional wavetrains. Proc. R. Soc. Lond. A 363, 525546.Google Scholar
Annenkov, S. Y. & Shrira, V. I. 2006 Role of non-resonant interactions in evolution on nonlinear random water wave fields. J. Fluid Mech. 561, 181207.CrossRefGoogle Scholar
Crawford, D. R., Saffman, P. G. & Yuen, H. C. 1980 Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2, 116.CrossRefGoogle Scholar
Dysthe, K. B., Trulsen, K., Krogstad, H. E. & Socquet-Juglard, H. 2003 Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech. 478, 110.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481500.CrossRefGoogle Scholar
Janssen, P. A. E. M. 1983 Long-time behaviour of a random inhomogeneous field of weekly nonlinear surface gravity waves. J. Fluid Mech. 133, 113132.CrossRefGoogle Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interaction and freak waves. J. Phys. Oceanogr. 33, 863884.2.0.CO;2>CrossRefGoogle Scholar
Kinsman, B. 1965 Wind waves, their generation and propagation on the ocean surface. Prentice-Hall.Google Scholar
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P. A. E. M. 1994 Dynamics and Modelling of Ocean Waves. Cambridge University Press.CrossRefGoogle Scholar
Shukla, P. K., Markland, M. & Stenflo, L. 2006 Modulational instability of nonlinear interacting incoherent sea states. Sov. Phys., J. Exp. Theor. Phys. Lett. 84, 645649.CrossRefGoogle Scholar
Stiassnie, M. 2001 Nonlinear interaction of inhomogeneous random water wave. ECMWF Report of the Workshop on Ocean Waves Forecasting, Reading, July 2–4, pp. 39–52.Google Scholar
Stiassnie, M. & Kroszynski, U. I. 1982 Long time evolution of an unstable water-wave train. J. Fluid Mech. 116, 207225.CrossRefGoogle Scholar
Yuen, H. C. & Ferguson, W. E. 1978 Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation. Phys. Fluids 21, 12751278.CrossRefGoogle Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. (Engl. Transl.) 2, 190194.Google Scholar