Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T13:10:49.206Z Has data issue: false hasContentIssue false

Sediment dynamics. Part 2. Dune formation in pipe flow

Published online by Cambridge University Press:  25 September 2009

MALIKA OURIEMI
Affiliation:
IUSTI CNRS UMR 6595 – Polytech'Marseille – Aix-Marseille Université (U1), 5 rue Enrico Fermi, 13453 Marseille cedex 13, France
PASCALE AUSSILLOUS
Affiliation:
IUSTI CNRS UMR 6595 – Polytech'Marseille – Aix-Marseille Université (U1), 5 rue Enrico Fermi, 13453 Marseille cedex 13, France
ÉLISABETH GUAZZELLI*
Affiliation:
IUSTI CNRS UMR 6595 – Polytech'Marseille – Aix-Marseille Université (U1), 5 rue Enrico Fermi, 13453 Marseille cedex 13, France
*
Email address for correspondence: Elisabeth.Guazzelli@polytech.univ-mrs.fr

Abstract

We present a phase diagram of the different dune patterns observed when a bed composed of spherical particles is subjected to a pipe flow. While the threshold for incipient motion is determined by the Shields number, that for dune formation seems to be controlled by the Reynolds number. A simple linear stability analysis based on a particle flux derived by Ouriemi, Aussillous & Guazzelli (J. Fluid Mech., 2009) accounts reasonably well for the experimental observations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: IFP-Lyon, Rond-Point de l'échangeur de Solaize, BP3, 69360 Solaize, France.

References

REFERENCES

Andreotti, B., Claudin, P. & Douady, S. 2002 Selection of dune shapes and velocities. Part 2. A two-dimensional modelling. Eur. Phys. J. B 28, 341352.CrossRefGoogle Scholar
Charru, F. 2006 Selection of the ripple length on a granular bed sheared by a liquid flow. Phys. Fluids. 18, 121508.CrossRefGoogle Scholar
Charru, F. & Hinch, E. J. 2000 ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Charru, F. & Hinch, E. J. 2006 Ripple formation on a particle bed sheared by a viscous liquid. J. Fluid Mech. 550, 111121.CrossRefGoogle Scholar
Charru, F. & Mouilleron-Arnould, H. 2002 Instability of a bed of particles sheared by a viscous flow. J. Fluid Mech. 452, 303323.CrossRefGoogle Scholar
Charru, F., Mouilleron-Arnould, H. & Eiff, O. 2004 Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 5580.CrossRefGoogle Scholar
Claudin, F. & Andreotti, B. 2006 A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252, 3044.CrossRefGoogle Scholar
Colombini, M. 2004 Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502, 116.CrossRefGoogle Scholar
Engelud, F. 1970 Instability of erodible beds. J. Fluid Mech. 42, 225–224.CrossRefGoogle Scholar
Fredsøe, J. 1974 On the development of dunes in erodible channels. J. Fluid Mech. 64, 116.CrossRefGoogle Scholar
Gottlieb, D., Hussaini, M. Y. & Orszag, S. A. 1984 Theory and application of spectral methods. In Spectral Methods for Partial Differential Equations (ed. Voight, R. G., Gottlieb, D. & Hussaini, M. Y.). SIAM, Philadelphia, 154.Google Scholar
Kennedy, J. F. 1963 The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech. 16, 521544.CrossRefGoogle Scholar
Loiseleux, T., Gondret, P., Rabaud, M. & Doppler, D. 2005 Onset of erosion and avalanches for an inclined granular bed sheared by a continuous laminar flow. Phys. Fluids 17, 103304.CrossRefGoogle Scholar
Ouriemi, M., Aussillous, P. & Guazzelli, E. 2009 Sediment dynamics. Part 1. Bed-load transport by shearing flows. J. Fluid Mech. 636, 295319.CrossRefGoogle Scholar
Ouriemi, M., Aussillous, P., Medale, M., Peysson, Y. & Guazzelli, E. 2007 Determination of the critical Shields number for particle erosion in laminar flow. Phys. Fluids 19, 061706.CrossRefGoogle Scholar
Richards, K. 1980 The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99, 597618.CrossRefGoogle Scholar
Sumer, M. & Bakioglu, M. 1984 On the formation of ripples on an erodible bed. J. Fluid Mech. 144, 177190.CrossRefGoogle Scholar

Ouremi et al. supplementary movie

Movie 1. Visualisation of vortices at the front of a vortex dunes, for batch B in fluid 1 with Q_pipe=3.11 E-05 m3/s. The length of the measurement window is 72 mm.

Download Ouremi et al. supplementary movie(Video)
Video 7.2 MB

Ouremi et al. supplementary movie

Movie 2. Vortex dune profile-evolution for batch C in fluid 1 with Q_pipe=3,96E-05 m3/s. The length of the measurement window is 700 mm.

Download Ouremi et al. supplementary movie(Video)
Video 3.8 MB

Ouremi et al. supplementary movie

Movie 3. Small dune profile-evolution for batch A in fluid 2 with Q_pipe=3.40 E-05 m3/s.The length of the measurement window is 450 mm.

Download Ouremi et al. supplementary movie(Video)
Video 7.8 MB