Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T13:19:28.210Z Has data issue: false hasContentIssue false

Sedimentation dynamics of passive particles in dilute bacterial suspensions: emergence of bioconvection

Published online by Cambridge University Press:  29 May 2024

Bryan O. Torres Maldonado
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Shravan Pradeep
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
Ranjiangshang Ran
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Douglas Jerolmack
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
Paulo E. Arratia*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
*
Email address for correspondence: parratia@seas.upenn.edu

Abstract

Microorganisms are ubiquitous in nature and technology. They inhabit diverse environments, ranging from small river tributaries and lakes, to oceans, as well as wastewater treatment plants and food manufacturing. In many of these environments, microorganisms coexist with settling particles. Here, we investigate the effects of microbial activity (swimming E. coli) on the settling dynamics of passive colloidal particles using particle tracking methods. Our results reveal the existence of two distinct regimes in the correlation length scale ($L_u$) and the effective diffusivity of the colloidal particles ($D_{eff}$), with increasing bacterial concentration ($\phi _b$). At low $\phi _b$, the parameters $L_u$ and $D_{eff}$ increase monotonically with increasing $\phi _b$. Beyond critical $\phi _b$, a second regime is found where both $D_{eff}$ and $L_u$ are independent of $\phi _b$. We demonstrate that the transition between these regimes is characterized by the emergence of bioconvection. We use experimentally measured particle-scale quantities $L_u$ and $D_{eff}$ to predict the critical bacterial concentration for the diffusion–bioconvection transition.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M., Erickstad, M., Gutierrez, E. & Groisman, A. 2012 Studies of bacterial aerotaxis in a microfluidic device. Lab on a Chip 12, 48354847.CrossRefGoogle Scholar
Arrieta, J., Polin, M., Saleta-Piersanti, R. & Tuval, I. 2019 Light control of localized photobioconvection. Phys. Rev. Lett. 123, 158101.CrossRefGoogle ScholarPubMed
Baracchini, O. & Sherris, J.C. 1959 The chemotactic effect of oxygen on bacteria. J. Pathol. Bacteriol. 77 (2), 565574.CrossRefGoogle ScholarPubMed
Bees, M.A. 2020 Advances in bioconvection. Annu. Rev. Fluid Mech. 52 (1), 449476.CrossRefGoogle Scholar
Bouvard, J., Douarche, C., Mergaert, P., Auradou, H. & Moisy, F. 2022 Direct measurement of the aerotactic response in a bacterial suspension. Phys. Rev. E 106, 034404.CrossRefGoogle Scholar
Bouvard, J., Moisy, F. & Auradou, H. 2023 Ostwald-like ripening in the two-dimensional clustering of passive particles induced by swimming bacteria. Phys. Rev. E 107 (4), 044607.CrossRefGoogle ScholarPubMed
Brosseau, Q., Ran, R., Graham, I., Jerolmack, D.J. & Arratia, P.E. 2022 Flow and aerosol dispersion from wind musical instruments. Phys. Fluids 34 (8), 087115.CrossRefGoogle Scholar
Carpenter, J.H. 1966 New measurements of oxygen solubility in pure and natural water. Limnol. Oceanogr. 11, 264277.CrossRefGoogle Scholar
Chen, D.T.N., Lau, A.W.C., Hough, L.A., Islam, M.F., Goulian, M., Lubensky, T.C. & Yodh, A.G. 2007 Fluctuations and rheology in active bacterial suspensions. Phys. Rev. Lett. 99, 148302.CrossRefGoogle ScholarPubMed
Crocker, J.C. & Grier, D.G. 1996 Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179 (1), 298310.CrossRefGoogle Scholar
Dabelow, L., Bo, S. & Eichhorn, R. 2019 Irreversibility in active matter systems: fluctuation theorem and mutual information. Phys. Rev. X 9 (2), 021009.Google Scholar
Einstein, A. 1905 On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Ann. Phys. 17 (854), 549560.CrossRefGoogle Scholar
Falkowski, P. 2012 The power of plankton. Nature 483, S17S20.CrossRefGoogle ScholarPubMed
Falkowski, P.G., Barber, R.T. & Smetacek, V. 1998 Biogeochemical controls and feedbacks on ocean primary production. Science 281 (5374), 200206.CrossRefGoogle ScholarPubMed
Gachelin, J., Miño, G., Berthet, H., Lindner, A., Rousselet, A. & Clément, E. 2013 Non-Newtonian viscosity of Escherichia coli suspensions. Phys. Rev. Lett. 110 (26), 268103.CrossRefGoogle ScholarPubMed
Ginot, F., Solon, A., Kafri, Y., Ybert, C., Tailleur, J. & Cottin-Bizonne, C. 2018 Sedimentation of self-propelled Janus colloids: polarization and pressure. New J. Phys. 20 (11), 115001.CrossRefGoogle Scholar
Ginot, F., Theurkauff, I., Levis, D., Ybert, C., Bocquet, L., Berthier, L. & Cottin-Bizonne, C. 2015 Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5 (1), 011004.Google Scholar
Han, P. & Bartels, D.M. 1996 Temperature dependence of oxygen diffusion in H$_2$O and D$_2$O. J. Phys. Chem. 100 (13), 55975602.CrossRefGoogle Scholar
Herndl, G.J. & Reinthaler, T. 2013 Microbial control of the dark end of the biological pump. Nat. Geosci. 6 (9), 718724.CrossRefGoogle ScholarPubMed
Hill, N.A. & Pedley, T.J. 2005 Bioconvection. Fluid Dyn. Res. 37 (1–2), 1.CrossRefGoogle Scholar
Hill, N.A., Pedley, T.J. & Kessler, J.O. 1989 Growth of bioconvection patterns in a suspension of gyrotactic micro-organisms in a layer of finite depth. J. Fluid Mech. 208, 509543.CrossRefGoogle Scholar
Hillesdon, A.J. & Pedley, T.J. 1996 Bioconvection in suspensions of oxytactic bacteria: linear theory. J. Fluid Mech. 324, 223259.CrossRefGoogle Scholar
Hillesdon, A.J., Pedley, T.J. & Kessler, J.O. 1995 The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57 (2), 299344.CrossRefGoogle Scholar
Honda, R., Matsuura, N., Sorn, S., Asakura, S., Morinaga, Y., Van Huy, T., Sabar, M.A., Masakke, Y., Hara-Yamamura, H. & Watanabe, T. 2023 Transition of antimicrobial resistome in wastewater treatment plants: impact of process configuration, geographical location and season. NPJ Clean Water 6 (1), 46.CrossRefGoogle Scholar
Jánosi, I.M., Kessler, J.O. & Horváth, V.K. 1998 Onset of bioconvection in suspensions of Bacillus subtilis. Phys. Rev. E 58, 47934800.CrossRefGoogle Scholar
Jeanneret, R., Pushkin, D.O., Kantsler, V. & Polin, M. 2016 Entrainment dominates the interaction of microalgae with micron-sized objects. Nat. Commun. 7, 12518.CrossRefGoogle ScholarPubMed
Jepson, A., Martinez, V.A., Schwarz-Linek, J., Morozov, A. & Poon, W.C.K. 2013 Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria. Phys. Rev. E 88 (4), 041002.CrossRefGoogle Scholar
Kasyap, T.V., Koch, D.L. & Wu, M. 2014 Hydrodynamic tracer diffusion in suspensions of swimming bacteria. Phys. Fluids 26 (8), 081901.CrossRefGoogle Scholar
Kim, M.J. & Breuer, K.S. 2004 Enhanced diffusion due to motile bacteria. Phys. Fluids 16 (9), L78L81.CrossRefGoogle Scholar
Kurtuldu, H., Guasto, J.S., Johnson, K.A. & Gollub, J.P. 2011 Enhancement of biomixing by swimming algal cells in two-dimensional films. Proc. Natl Acad. Sci. 108 (26), 1039110395.CrossRefGoogle ScholarPubMed
Leptos, K.C., Guasto, J.S., Gollub, J.P., Pesci, A.I. & Goldstein, R.E. 2009 Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103 (19), 198103.CrossRefGoogle ScholarPubMed
Li, J., Ran, R., Wang, H., Wang, Y., Chen, Y., Niu, S., Arratia, P.E. & Yang, S. 2021 Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 12 (1), 5484.CrossRefGoogle ScholarPubMed
van Loosdrecht, M.C.M. & Brdjanovic, D. 2014 Anticipating the next century of wastewater treatment. Science 344 (6191), 14521453.CrossRefGoogle ScholarPubMed
López, H.M., Gachelin, J., Douarche, C., Auradou, H. & Clément, E. 2015 Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115 (2), 028301.CrossRefGoogle ScholarPubMed
Lorenzo, J.M., Munekata, P.E., Dominguez, R., Pateiro, M., Saraiva, J.A. & Franco, D. 2018 Chapter 3 - main groups of microorganisms of relevance for food safety and stability: general aspects and overall description. In Innovative Technologies for Food Preservation (ed. F.J. Barba, A.S. Sant'Ana, V. Orlien & M. Koubaa), pp. 53–107. Academic Press.CrossRefGoogle Scholar
Maggi, C., Lepore, A., Solari, J., Rizzo, A. & Di Leonardo, R. 2013 Motility fractionation of bacteria by centrifugation. Soft Matt. 9 (45), 1088510890.CrossRefGoogle Scholar
Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M. & Simha, R.A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 11431189.CrossRefGoogle Scholar
Martínez-Salas, E., Martín, J.A. & Vicente, M. 1981 Relationship of Escherichia coli density to growth rate and cell age. J. Bacteriol. 147 (1), 97100.CrossRefGoogle ScholarPubMed
Miño, G., Mallouk, T.E., Darnige, T., Hoyos, M., Dauchet, J., Dunstan, J., Soto, R., Wang, Y., Rousselet, A. & Clement, E. 2011 Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106 (4), 048102.CrossRefGoogle Scholar
Moran, J.L. & Posner, J.D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49 (1), 511540.CrossRefGoogle Scholar
Nash, R.W., Adhikari, R., Tailleur, J. & Cates, M.E. 2010 Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming. Phys. Rev. Lett. 104 (25), 258101.CrossRefGoogle ScholarPubMed
Nealson, K.H. 1997 Sediment bacteria: who's there, what are they doing, and what's new? Annu. Rev. Earth Planet. Sci. 25 (1), 403434.CrossRefGoogle ScholarPubMed
Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2010 Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105 (8), 088304.CrossRefGoogle ScholarPubMed
Patteson, A.E., Gopinath, A. & Arratia, P.E. 2016 a Active colloids in complex fluids. Curr. Opin. Colloid Interface Sci. 21, 8696.CrossRefGoogle Scholar
Patteson, A.E., Gopinath, A., Goulian, M. & Arratia, P.E. 2015 Running and tumbling with E. coli in polymeric solutions. Sci. Rep. 5, 15761.CrossRefGoogle Scholar
Patteson, A.E., Gopinath, A., Purohit, P.K. & Arratia, P.E. 2016 b Particle diffusion in active fluids is non-monotonic in size. Soft Matt. 12 (8), 23652372.CrossRefGoogle ScholarPubMed
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.CrossRefGoogle Scholar
Pradeep, S. & Arratia, P.E. 2022 Bacteria: to biofilm or not to biofilm. eLife 11, e80891.CrossRefGoogle ScholarPubMed
Rafaï, S., Jibuti, L. & Peyla, P. 2010 Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104 (9), 098102.CrossRefGoogle ScholarPubMed
Ramaswamy, S. 2010 The mechanics and statistics of active matter. Annu. Rev. Condens. Matt. Phys. 1 (1), 323345.CrossRefGoogle Scholar
Ran, R., Brosseau, Q., Blackwell, B.C., Qin, B., Winter, R.L. & Arratia, P.E. 2021 Bacteria hinder large-scale transport and enhance small-scale mixing in time-periodic flows. Proc. Natl Acad. Sci. USA 118 (40), e2108548118.CrossRefGoogle ScholarPubMed
Ran, R., Gagnon, D.A., Morozov, A. & Arratia, P.E. 2022 Polymers in swarming bacterial turbulence. Preprint, arXiv:2111.00068v2.Google Scholar
Roberto, A.A., Van Gray, J.B. & Leff, L.G. 2018 Sediment bacteria in an urban stream: spatiotemporal patterns in community composition. Water Res. 134, 353369.CrossRefGoogle Scholar
Russel, W.B., Russel, W.B., Saville, D.A & Schowalter, W.R. 1991 Colloidal Dispersions. Cambridge University Press.Google Scholar
Savage, N. 2011 Algae: the scum solution. Nature 474 (7352), S15S16.CrossRefGoogle ScholarPubMed
Schallenberg, M. & Kalff, J. 1993 The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems. Ecology 74 (3), 919934.CrossRefGoogle Scholar
Schwarz-Linek, J., Arlt, J., Jepson, A., Dawson, A., Vissers, T., Miroli, D., Pilizota, T., Martinez, V.A. & Poon, W.C.K. 2016 Escherichia coli as a model active colloid: a practical introduction. Coll. Surf. B: Biointerfaces 137, 216.CrossRefGoogle Scholar
Segrè, P.N., Herbolzheimer, E. & Chaikin, P.M. 1997 Long-range correlations in sedimentation. Phys. Rev. Lett. 79, 25742577.CrossRefGoogle Scholar
Singh, J., Patteson, A., Torres Maldonado, B., Purohit, P.K. & Arratia, P.E. 2021 Bacteria hinders particle sedimentation. Soft Matt. 17, 41514160.CrossRefGoogle ScholarPubMed
Sun, X., Peeni, B.A., Yang, W., Becerril, H.A. & Woolley, A.T. 2007 Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding. J. Chromatogr. A 1162 (2), 162166.CrossRefGoogle ScholarPubMed
Swartz, J.R. 2001 Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12 (2), 195201.CrossRefGoogle ScholarPubMed
Tailleur, J. & Cates, M.E. 2008 Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100 (21), 218103.CrossRefGoogle ScholarPubMed
Tee, S.-Y., Mucha, P.J., Cipelletti, L., Manley, S., Brenner, M.P., Segre, P.N. & Weitz, D.A. 2002 Nonuniversal velocity fluctuations of sedimenting particles. Phys. Rev. Lett. 89, 054501.CrossRefGoogle ScholarPubMed
Thiffeault, J.-L. & Childress, S. 2010 Stirring by swimming bodies. Phys. Lett. A 374 (34), 34873490.CrossRefGoogle Scholar
Torres Maldonado, B.O., Ran, R., Galloway, K.L., Brosseau, Q., Pradeep, S. & Arratia, P.E. 2022 Phase separation during sedimentation of dilute bacterial suspensions. Phys. Fluids 34 (11), 113305.CrossRefGoogle Scholar
Vachier, J. & Mazza, M.G. 2019 Dynamics of sedimenting active Brownian particles. Eur. Phys. J. E 42 (1), 11.CrossRefGoogle ScholarPubMed
Vermeulen, N., Keeler, W.J., Nandakumar, K. & Leung, K.T. 2008 The bactericidal effect of ultraviolet and visible light on Escherichia coli. Biotechnol. Bioengng 99 (3), 550556.CrossRefGoogle ScholarPubMed
Wager, H.W.T. 1911 VII. On the effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms. Phil. Trans. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character 201 (274–281), 333390.Google Scholar
Wang, Z., Chen, H.Y., Sheng, Y.J. & Tsao, H.K. 2014 Diffusion, sedimentation equilibrium, and harmonic trapping of run-and-tumble nanoswimmers. Soft Matt. 10 (18), 32093217.CrossRefGoogle ScholarPubMed
Wu, X.-L. & Libchaber, A. 2000 Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84 (13), 30173020.CrossRefGoogle Scholar
Zhang, L., Tu, D., Li, X., Lu, W. & Li, J. 2020 Impact of long-term industrial contamination on the bacterial communities in urban river sediments. BMC Microbiol. 20 (1), 254.CrossRefGoogle ScholarPubMed