Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T14:08:03.074Z Has data issue: false hasContentIssue false

Texture-driven elastohydrodynamic bouncing

Published online by Cambridge University Press:  23 September 2016

Thibault Chastel
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636; PSL - ESPCI, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Universités - UPMC, Univ. Paris 06; Sorbonne Paris Cité - UDD, Univ. Paris 07, France
Philippe Gondret
Affiliation:
Laboratoire FAST, Univ. Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France
Anne Mongruel*
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636; PSL - ESPCI, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Universités - UPMC, Univ. Paris 06; Sorbonne Paris Cité - UDD, Univ. Paris 07, France
*
Email address for correspondence: anne.mongruel@upmc.fr

Abstract

We investigate in detail the dynamics of bouncing of a fluid-immersed solid sphere onto a textured wall at moderate Reynolds and Stokes numbers. Using high-frequency interferometric measurements, the dynamics of the sphere is resolved in time and space, before, during and after collision with the wall. The critical Stokes number for bouncing is shown to be significantly influenced by the geometry of the texture, i.e. the surface fraction and the height of the micro-pillars. A modified Hertz model is developed to take into account the influence of this texture geometry on the collision dynamics. The predicted scaling for the collision time and penetration depth of the sphere into the textured wall is found to be in good agreement with the experimental measurements.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardekany, A. M. & Rangel, R. H. 2008 Numerical investigation of particle–particle and particle–wall collisions in a viscous fluid. J. Fluid Mech. 596, 437466.Google Scholar
Barnoky, G. & Davis, R. H. 1988 Elastohydrodynamic collision and rebound of spheres: experimental verification. Phys. Fluids 31, 13241329.Google Scholar
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17, 103301.CrossRefGoogle Scholar
Chastel, T.2015 Interactions hydrodynamiques entre une sphère et une paroi texturée: approche, collision et rebond. PhD thesis, Université Pierre et Marie Curie.Google Scholar
Chastel, T. & Mongruel, A. 2016 Squeeze flow between a sphere and a textured wall. Phys. Fluids 28, 023301.Google Scholar
Costa, P., Boersma, B. J., Westerweel, J. & Breugem, W.-P. 2015 Collision model for fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92, 053012.Google Scholar
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90, 044301.Google Scholar
Davis, R. H., Serayssol, J.-M. & Hinch, E. J. 1986 The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163, 479497.Google Scholar
Falcon, E., Laroche, C., Fauve, S. & Coste, C. 1998 Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B 3, 4557.Google Scholar
Gondret, P., Hallouin, E., Lance, M. & Petit, L. 1999 Experiments on the motion of a solid sphere toward a wall: from viscous dissipation to elastohydrodynamic bouncing. Phys. Fluids 11, 28032805.Google Scholar
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14, 643652.CrossRefGoogle Scholar
Izard, E., Bonometti, T. & Lacaze, L. 2014 Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid. J. Fluid Mech. 747, 422446.CrossRefGoogle Scholar
Johnson, K. L. 1985 Contact Mechanics. Cambridge University Press.Google Scholar
Joseph, G. G. 1998 Cavitation and the state of stress in a flowing liquid. J. Fluid Mech. 366, 367378.Google Scholar
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1970 Theory of Elasticity. Elsevier.Google Scholar
Lecoq, N., Feuillebois, F., Anthore, N., Anthore, R., Bostel, F. & Petipas, C. 1993 Precise measurement of particle–wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A 5, 312.Google Scholar
Legendre, D., Zenit, R., Daniel, C. & Guiraud, P. 2006 A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid. Chem. Engng Sci. 61, 35433549.Google Scholar
Lian, G., Adams, M. J. & Thornton, C. 1996 Elastohydrodynamic collisions of solid spheres. J. Fluid Mech. 311, 141152.Google Scholar
Marshall, J. S. 2011 Viscous damping force during head-on collision of two spherical particles. Phys. Fluids 23, 013305.CrossRefGoogle Scholar
Marston, J. O., Yong, W. & Thoroddsen, S. T. 2010 Direct verification of the lubrication force on a sphere travelling through a viscous film upon approach to a solid wall. J. Fluid Mech. 655, 515526.Google Scholar
Marston, J. O., Yong, W., Ng, W. K., Tan, R. B. H. & Thoroddsen, S. T. 2011 Cavitation structures formed during the rebound of a sphere from a wetted surface. Exp. Fluids 50, 729746.Google Scholar
Mongruel, A., Lamriben, C., Yahiaoui, S. & Feuillebois, F. 2010 The approach of a sphere to a wall at finite Reynolds number. J. Fluid Mech. 661, 229238.Google Scholar
Simeonov, J. A. & Calantoni, J. 2012 Modeling mechanical contact and lubrication in direct numerical simulations of colliding particles. Intl J. Multiphase Flow 46, 3853.Google Scholar
Simeonov, J. A. 2015 The unsteady hydrodynamic force during the collision of two spheres in a viscous fluid. Acta Mechanica 227, 565580.Google Scholar
Yang, F.-L. & Hunt, M. L. 2008 A mixed contact model for an immersed collision between two solid surfaces. Phil. Trans. R. Soc. Lond. A 366, 22052218.Google Scholar