Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-20T00:17:10.822Z Has data issue: false hasContentIssue false

Transient and limit cycle combustion dynamics analysis of turbulent premixed swirling flames

Published online by Cambridge University Press:  05 October 2017

Paul Palies*
Affiliation:
United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108, USA
Milos Ilak
Affiliation:
United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108, USA
Robert Cheng
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
*
Email address for correspondence: paliesp@utc.utrc.com

Abstract

Premixed low swirling flames (methane–air and hydrogen–methane–air) are experimentally investigated for three different regimes. Stable, local transient to instability and limit cycle regimes corresponding to three distinct equivalence ratios are considered. Dynamic mode decomposition is applied to the hydrogen–air–methane flame to retrieve the modes frequencies, growth rates and spatial distributions for each regime. The results indicate that a vortical wave propagating along the flame front is associated with the transition from stability to instability. In addition, it is shown that a key effect on stability is the location of the non-oscillating (0 Hz) flame component. The phase-averaged unsteady motion of the flames over one cycle of oscillation shows the vortical wave rolling up the flame front. The Rayleigh index maps are formed to identify the region of driving and damping of the self-sustained oscillation, while the flame transfer function phase leads to the propagation mode of the perturbations along the flame front. The second mechanism identified concerns the swirl number fluctuation induced by the mode conversion. By utilizing hypotheses for the flow field and the flame structure, it is pointed out that those mechanisms are at work for both flames (methane–air and hydrogen–methane–air) and their effects on the unsteady heat release are determined. Both unsteady heat release contributions, the vortical wave induces flame surface fluctuations and swirl number oscillation induces unsteady turbulent burning velocity, are in phase opposition and of similar amplitudes.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, V. & Lieuwen, T. 2015 Effect of azimuthal flow fluctuations on flow and flame dynamics of axisymmetric swirling flames. Phys. Fluids 27 (3), 105106.Google Scholar
Bourgoin, J. F., Durox, D., Moeck, J. P., Schuller, T. & Candel, S. 2013 Self-sustained instabilities in an annular combustor coupled by azimuthal and longitudinal acoustic modes. In ASME Turbo Expo, GT2013-95010, San Antonio, Texas, USA.Google Scholar
Broda, J. C., Seo, S., Santoro, R. J., Shirhattikar, G. & Yang, V. 1998 An experimental study of combustion dynamics of a premixed swirl injector. Proc. Combust. Inst. 27 (2), 18491856.Google Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.Google Scholar
Candel, S., Durox, D., Schuller, T., Bourgouin, J. F. & Moeck, J. P. 2014 Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46, 147173.Google Scholar
Caux-Brisebois, V., Steinberg, A. M., Arndt, C. M. & Meier, W. 2014 Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor. Combust. Flame 161, 31663180.CrossRefGoogle Scholar
Chan, C. K., Lau, K. S., Chin, W. K. & Cheng, R. K. 2005 Freely propagating open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24, 511518.CrossRefGoogle Scholar
Cheng, R. K., Littlejohn, D., Nazeer, W. A. & Smith, K. O. 2008 Laboratory studies of the flow field characteristics of low-swirl injectors for application to fuel-flexible turbines. J. Engng Gas Turbine Power 130, 2150121511.Google Scholar
Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Pellizzari, R., Loftus, P. & Benson, C. 2000 Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc. Combust. Inst. 28, 13051313.CrossRefGoogle Scholar
Cheng, R. K. 2005 Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 114.CrossRefGoogle Scholar
Davis, D. W., Therkelsen, P. L., Littlejohn, D. & Cheng, R. K. 2013 Effects of hydrogen on the thermo-acoustics coupling mechanisms of low-swirl injector flames in a model gas turbine combustor. Proc. Combust. Inst. 34, 31353143.CrossRefGoogle Scholar
Day, M., Tachibana, S., Bell, J., Lijewski, M., V., Beckner & Cheng, R. K. 2012 A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: I. Methane flames. Combust. Flame 159 (1), 275290.CrossRefGoogle Scholar
Durox, D., Schuller, T. & Candel, S. 2005 Combustion dynamics of inverted conical flames. Proc. Combust. Inst. 30 (1), 17171724.Google Scholar
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21 (1), 013124.Google Scholar
Herding, G., Snyder, R., Rolon, R. C. & Candel, S. 1998 Investigation of cryogenic propellant flames using computerized tomography of OH emission images. J. Propul. Power 13, 146151.CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2004 Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: transition from stable to unstable flame. Combust. Flame 136, 383389.Google Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293364.Google Scholar
Kim, K. T. & Santavicca, D. A. 2013 Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor. Combust. Flame 160 (8), 14411457.Google Scholar
Komarek, T. & Polifke, W. 2010 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. J. Engng Gas Turbine Power 132 (061053).Google Scholar
Kuo, K. & Acharya, R. 2012 Fundamentals of Turbulent and Multiphase Combustion. Wiley.Google Scholar
Labry, Z. A., Taamallah, S., Kewlani, G., Shanbhogue, S. J. & Ghoniem, A. 2014 Intermittency and mode transition in an acoustically uncoupled lean premixed swirl-stabilized combustor. In ASME Turbo Expo, GT2014-27266.Google Scholar
Lieuwen, T. C. 2002 Experimental investigation of limit-cycles oscillations in an unstable gas turbine combustor. J. Propul. Power 18 (1), 6167.CrossRefGoogle Scholar
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.Google Scholar
Motheau, E., Nicoud, F. & Poinsot, T. 2014 Mixed acoustic-entropy combustion instabilities in gas turbines. J. Fluid Mech. 749, 542576.CrossRefGoogle Scholar
Nagaraja, S., Kedia, K. & Sujith, R. I. 2009 Characterizing energy growth during combustion instabilities: Singularvalues or eigenvalues? Proc. Combust. Inst. 32, 29332940.CrossRefGoogle Scholar
Nair, V., Thampi, G. & Sujith, R. I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.CrossRefGoogle Scholar
Palies, P.2010 Swirling flames dynamics and combustion instabilities. PhD thesis, Ecole Centrale Paris, Chatenay-Malabry, France.Google Scholar
Palies, P., Davis, D., Cheng, R. K. & Ilak, M. 2015 Dynamic Mode Decomposition (DMD) application to premixed low swirl injector flames. 68th Annual Meeting of the APS Division of Fluid Dynamics vol. 60. (21).Google Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2009 The response of swirling premixed flames to velocity perturbations. Proceedings of the European Combustion Meeting.Google Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2010 The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 157 (9), 16981717.Google Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2011a Acoustic-convective mode conversion in an aerofoil cascade. J. Fluid Mech. 672, 545569.Google Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2011b Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame 158, 19801991.Google Scholar
Palies, P., Schuller, T., Durox, D. & Candel, S. 2011c Modeling of premixed swirling flames transfer functions. Proc. Combust. Inst. 33 (2), 29672974.CrossRefGoogle Scholar
Palies, P., Schuller, T., Durox, D., Gicquel, L. Y. M. & Candel, S. 2011d Acoustically perturbed turbulent swirling flames. Phys. Fluids 23 (3), 037101.Google Scholar
Poinsot, T. & Veynante, D. 2011 Theoretical and Numerical Combustion, 2nd edn. Edwards.Google Scholar
Price, R. B., Hurle, I. R. & Sugden, T. M. 1969 Optical studies of the generation of noise in turbulent flames. Proc. Combust. Inst. 12 (1), 10931102.CrossRefGoogle Scholar
Richards, G. & Yip, J. 1999 Effect of axial swirl vane location on combustion dynamics. Combustion Institute/American Flame Research Committee Meeting, San Antonio, Texas, USA. ASME.Google Scholar
Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.Google Scholar
Sayadi, T., Schmid, P., Richecoeur, F. & Durox, D. 2015 Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems. Phys. Fluids 27 (3), 037102.Google Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Seo, S.1999 Parametric study of lean-premixed combustion instability in a pressurized model gas turbine combustor. PhD thesis, The Pennsylvania State University.Google Scholar
Straub, D. & Richards, G. 1999 Effect of axial swirl vane location on combustion dynamics. In ASME Turbo Expo, GT1999-109, Indianapolis, USA.Google Scholar
Taamallah, S., Labry, Z. A., Shanbhogue, S. & Ghoniem, A. F. 2015 Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc. Combust. Inst. 35, 32733282.Google Scholar
Therkelsen, P. L., Enrique Portillo, J., Littlejohn, D., Martin, S. M. & Cheng, R. K. 2013 Self-induced unstable behaviors of CH4 and H2/CH4 flames in a model combustor with a low-swirl injector. Combust. Flame 160, 307321.Google Scholar