Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-28T01:07:23.716Z Has data issue: false hasContentIssue false

The transverse force on a drop in an unbounded parabolic flow

Published online by Cambridge University Press:  29 March 2006

Philip R. Wohl
Affiliation:
Department of Mathematics, New York University
Present address: Department of Mathematics, Carleton University, Ottawa, Ontario.
S. I. Rubinow
Affiliation:
Graduate School of Medical Sciences, Cornell University, New York

Abstract

The steady flow in and around a deformable liquid sphere moving in an unbounded viscous parabolic flow and subject to an external body force is calculated for small values of the ratio of the Weber number to the Reynolds number in the creeping-flow regime. It is found that, in addition to the drag force, the drop experiences a force orthogonal to the undisturbed flow direction. When the body force is absent (neutrally buoyant drop), this lift force tends to drive the drop inwards to the axis, where the undisturbed flow velocity is maximum, i.e., towards a position of lower velocity gradient. In the case for which the parabolic flow profile is a Poiseuille flow profile, the lift force is given by the expression. \[ {\bf F}_1 =-6\pi\mu\epsilon U_0\frac{\alpha +\frac{2}{3}}{\alpha + 1}\bigg(\frac{a}{R_0}\bigg)^4{\bf b}F[1+o(\epsilon)]. \] Here a is the radius of the undeformed sphere, R0 is the radial distance from the position of maximum undisturbed flow U0 at the profile axis to the position of zero flow, ε is the ratio of the Weber number to the Reynolds number, given by ε=μU0T−1, where μ is the external fluid viscosity and T is the surface tension of the drop, α is the ratio of the drop and external fluid viscosities, b is the radial vector from the flow axis to the centre of mass of the drop, and F is a function of α and a dimensionless parameter dependent on the body force that is determined in the analysis. Reasonable agreement is found between the observations by Goldsmith & Mason (1962) of the axial drift of liquid drops in Poiseuille flow and the predictions of the theory herein.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bjorklund, S. 1965 On the force on a rigid sphere in unbounded Poiseuille flow. Ph.D. thesis, Stevens Institute of Technology, Hoboken, N.J.
Brenner, H. 1964 Chem. Engng Sci. 19, 519.
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Rheol. Acta, 4, 64.
Chaffey, C. E., Brenner, H. & Mason, S. G. 1967 Rheol. Acta, 6, 100.
Cox, R. G. 1969 J. Fluid Mech. 37, 601.
Cox, R. G. & Brenner, H. 1968 Chem. Engng Sci. 23, 147.
Einstein, A. 1906 Ann. Phys. 19, 289.
Forgacs, O. L., Robertson, A. A. & Mason, S. G. 1958 Pulp & Paper Mag. Can. 59 (5), 117.
Fung, Y. C. 1966 Fed. Proc. Am. Soc. Exp. Biol. 25 (6), 1761.
Goldsmith, H. L. & Mason, S. G. 1962 J. Colloid Sci. 17, 448.
Haber, S. & Hetsroni, G. 1971 J. Fluid Mech. 49, 257.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.
Hetsroni, G. & Haber, S. 1970 Rheol. Acta 9, 486.
Jahnke, E. & Emde, F. 1945 Tables of Functions, 4th edn. Dover.
Karnis, A., Goldsmith, H. L. & Mason, S. G. 1963 Nature, 200, 159.
Karnis, A. & Mason, S. G. 1967 J. Colloid Sci. 24, 164.
Lamb, H. 1945 Hydrodynamics, 6th edn. Dover.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Addison-Wesley.
Rubinow, S. I. 1964 Biorheol. 1, 117.
Rubinow, S. I. & Keller, J. B. 1961 J. Fluid Mech. 11, 447.
Saffman, P. G. 1965 J. Fluid Mech. 22, 385.
Saito, S. 1913 Tôhoku Imperial University, Sendai, Japan, Sci. Rep. no. 2, p. 179.
Segre, G. & Silberberg, A. 1963 J. Colloid Sci. 18, 312.
Taylor, G. I. 1934 Proc. Roy. Soc. A, 146, 501.
Taylor, T. D. & Acrivos, A. 1964 J. Fluid Mech. 18, 466.
Whitmore, R. L. 1968 Rheology of the Circulation. Pergamon.
Wohl, P. R. 1971 The transverse force on a drop in unbounded Poiseuille flow. Ph.D. thesis, Cornell University.