Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-30T08:19:59.908Z Has data issue: false hasContentIssue false

Triadic resonant instability in confined and unconfined axisymmetric geometries

Published online by Cambridge University Press:  21 February 2023

S. Boury*
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA CNRS, Laboratoire de Physique, ENS de Lyon, F-69342 Lyon, France Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
P. Maurer
Affiliation:
CNRS, Laboratoire de Physique, ENS de Lyon, F-69342 Lyon, France
S. Joubaud
Affiliation:
CNRS, Laboratoire de Physique, ENS de Lyon, F-69342 Lyon, France Institut Universitaire de France (IUF), 1 rue Descartes 75005 Paris, France
T. Peacock
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
P. Odier
Affiliation:
CNRS, Laboratoire de Physique, ENS de Lyon, F-69342 Lyon, France
*
Email address for correspondence: sb7918@nyu.edu

Abstract

We present an investigation of the resonance conditions governing triad interactions of cylindrical internal waves, i.e. Kelvin modes, described by Bessel functions. Our analytical study, supported by experimental measurements, is performed both in confined and unconfined axisymmetric domains. We are interested in two conceptual questions: can we find resonance conditions for a triad of Kelvin modes? What is the impact of the boundary conditions on such resonances? In both the confined and unconfined cases, we show that sub-harmonics can be spontaneously generated from a primary wave field if they satisfy at least a resonance condition on their frequencies of the form $\omega _0 = \pm \omega _1 \pm \omega _2$. We demonstrate that the resulting triad is also spatially resonant, but that the resonance in the radial direction may not be exact in confined geometries due to the prevalence of boundary conditions – a key difference compared with Cartesian plane waves.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, T., Blackburn, H.M., Lopez, J.M., Manasseh, R. & Meunier, P. 2015 Triadic resonances in precessing rapidly rotating cylinder flows. J. Fluid Mech. 778, R1.CrossRefGoogle Scholar
Albrecht, T., Blackburn, H.M., Lopez, J.M., Manasseh, R. & Meunier, P. 2018 On triadic resonance as an instability mechanism in precessing cylinder flow. J. Fluid Mech. 841, R3.CrossRefGoogle Scholar
Baker, L.E. & Sutherland, B.R. 2020 The evolution of superharmonics excited by internal tides in non-uniform stratification. J. Fluid Mech. 891, R1.CrossRefGoogle Scholar
Beattie, C.L. 1958 Table of first 700 zeros of Bessel functions – $J_l(x)$ and $J_l'(x)$. Bell Syst. Tech. J. 689697.CrossRefGoogle Scholar
Bourget, B. 2014 Ondes internes, de l'instabilité au mélange. approche expérimentale. PhD thesis, Université de Lyon.Google Scholar
Boury, S. 2020 Energy and buoyancy transport by inertia-gravity waves in non-linear stratifications. application to the ocean. PhD thesis, Université de Lyon.Google Scholar
Boury, S., Odier, P. & Peacock, T. 2020 Axisymmetric internal wave transmission and resonance in non-linear stratifications. J. Fluid Mech. 886, A8.CrossRefGoogle Scholar
Boury, S., Peacock, T. & Odier, P. 2019 Excitation and resonant enhancement of axisymmetric internal wave modes. Phys. Rev. Fluids 4, 034802.CrossRefGoogle Scholar
Boury, S., Peacock, T. & Odier, P. 2021 a Experimental generation of axisymmetric internal wave super-harmonics. Phys. Rev. Fluids 6, 064801.CrossRefGoogle Scholar
Boury, S., Sibgatullin, I., Ermanyuk, E., Odier, P., Joubaud, S. & Dauxois, T. 2021 b Vortex cluster arising from an axisymmetric inertial wave attractor. J. Fluid Mech. 926, A12.CrossRefGoogle Scholar
Cazaubiel, A., Haudin, F., Falcon, E. & Berhanu, M. 2019 Forced three-wave interactions of capillary-gravity surface waves. Phys. Rev. Fluids 4, 074803.CrossRefGoogle Scholar
Dauxois, T., Joubaud, S., Odier, P. & Venaille, A. 2018 Instabilities of internal gravity wave beams. Annu. Rev. Fluid Mech. 50, 131156.CrossRefGoogle Scholar
Eloy, C., Le Gal, P. & Le Dizés, S. 2003 Elliptic and triangular instabilities in rotating cylinders. J. Fluid Mech. 476, 357388.CrossRefGoogle Scholar
Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29, 1322.CrossRefGoogle Scholar
Fortuin, J.M.H. 1960 Theory and application of two supplementary methods of constructing density gradient columns. J. Polym. Sci. A 44, 505515.Google Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2006 A novel internal waves generator. Exp. Fluids 42, 123130.CrossRefGoogle Scholar
Grayer II, H., Yalim, J., Welfert, B.D. & Lopez, J.M. 2021 Stably stratified square cavity subjected to horizontal oscillations: responses to small amplitude forcing. J. Fluid Mech. 915, A85.CrossRefGoogle Scholar
Guimbard, D. 2008 L'instabilité elliptique en milieu stratifié tournant. PhD thesis, Université du Sud Toulon Var.Google Scholar
Ha, K., Chomaz, J.-M. & Ortiz, S. 2021 Transient growth, edge states, and repeller in rotating solid and fluid. Phys. Rev. E 103, 033102.CrossRefGoogle ScholarPubMed
Husseini, P., Varma, D., Dauxois, T., Joubaud, S., Odier, P. & Mathur, M. 2019 Experimental study on superharmonic wave generation by resonant interaction between internal wave modes. Phys. Rev. Fluids (submission).Google Scholar
Joubaud, S., Munroe, J., Odier, P. & Dauxois, T. 2012 Experimental parametric subharmonic instability in stratified fluids. Phys. Fluids 24, 041703.CrossRefGoogle Scholar
Lagrange, R., Meunier, P. & Eloy, C. 2016 Triadic instability of a non-resonant precessing fluid cylinder. C. R. Méc 344, 418433.CrossRefGoogle Scholar
Lopez, J.M., Hart, J.E., Marques, F., Kittelman, S. & Shen, J. 2002 Instability and mode interactions in a differentially driven rotating cylinder. J. Fluid Mech. 462, 383409.CrossRefGoogle Scholar
Lopez, J.M. & Marques, F. 2018 Rapidly rotating precessing cylinder flows: forced triadic resonances. J. Fluid Mech. 839, 239270.CrossRefGoogle Scholar
Maurer, P. 2017 Approche expérimentale de la dynamique non-linéaire d'ondes internes en rotation. PhD thesis, Université de Lyon.Google Scholar
Maurer, P., Ghaemsaidi, S.J., Joubaud, S., Peacock, T. & Odier, P. 2017 An axisymmetric inertia-gravity wave generator. Exp. Fluids 58, 143.CrossRefGoogle Scholar
Maurer, P., Joubaud, S. & Odier, P. 2016 Generation and stability of inertia-gravity waves. J. Fluid Mech. 808, 539561.CrossRefGoogle Scholar
Mora, D.O., Monsalve, E., Brunet, M., Dauxois, T. & Cortet, P.-P. 2021 Three-dimensionality of the triadic resonance instability of a plane inertial wave. Phys. Rev. Fluids 6, 074801.CrossRefGoogle Scholar
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. & Clark, C.W. 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Oster, G. & Yamamoto, M. 1963 Density gradient techniques. Chem. Rev. 63, 257268.CrossRefGoogle Scholar
Shmakova, N.D. & Flór, J.-B. 2019 Nonlinear aspects of focusing internal waves. J. Fluid Mech. 862, R4.CrossRefGoogle Scholar
Sibgatullin, I., Ermanyuk, E.V., Xiulin, X., Maas, L.R.M. & Dauxois, T. 2017 Direct numerical simulation of three–dimensional inertial wave attractors. In Ivannikov ISPRAS Open Conference, Moscow, Russia, pp. 137–143. IEEE.CrossRefGoogle Scholar
Varma, D., Chalamalla, V.K. & Mathur, M. 2020 Spontaneous superharmonic internal wave excitation by modal interactions in uniform and nonuniform stratifications. Dyn. Atmos. Oceans 91, 101159.CrossRefGoogle Scholar
Yalim, J., Lopez, J.M. & Welfert, B.D. 2018 Vertically forced stably stratified cavity flow: instabilities of the basic state. J. Fluid Mech. 851, R6.CrossRefGoogle Scholar