Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T06:27:56.816Z Has data issue: false hasContentIssue false

Analysis of the flame–wall interaction in premixed turbulent combustion

Published online by Cambridge University Press:  01 June 2018

Peipei Zhao
Affiliation:
UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Lipo Wang*
Affiliation:
UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Nilanjan Chakraborty
Affiliation:
School of Engineering, Newcastle University, Newcastle-Upon-TyneNE1 7RU, UK
*
Email address for correspondence: lipo.wang@sjtu.edu.cn

Abstract

The present work focuses on the flame–wall interaction (FWI) based on direct numerical simulations (DNS) of a head-on premixed flame quenching configuration at the statistically stationary state. The effects of FWI on the turbulent flame temperature, wall heat flux, flame dynamics and flow structures were investigated. In turbulent head-on quenching, particularly for high turbulence intensity, the distorted flames generally consist of the head-on flame part and the entrained flame part. The flame properties are jointly influenced by turbulence, heat generation from chemical reactions and heat loss to the cold wall boundary. For the present FWI configuration, as the wall is approached, the ‘influence zone’ can be identified as the region within which the flame temperature, scalar gradient and flame dilatation start to decrease, whereas the wall heat flux tends to increase. As the distance to the wall drops below the flame-quenching distance, approximately where the wall heat flux reaches its maximum value, chemical reactions become negligibly weak inside the ‘quenching zone’. A simplified counter-flow model is also proposed. With the reasonably proposed relation between the flame speed and the flame temperature, the model solutions match well with the DNS results, both qualitatively and quantitatively. Moreover, near-wall statistics of some important flame properties, including the flame dilatation, reaction progress variable gradient, tangential strain rate and curvature were analysed in detail under different wall boundary conditions.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alshaalan, T. M. & Rutland, C. J. 1998 Turbulence, scalar transport, and reaction rates in flame-wall interaction. Symp. (Intl) Combust. 27 (1), 793799.CrossRefGoogle Scholar
Alshaalan, T. M. & Rutland, C. J. 2002 Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol. 174 (1), 135165.Google Scholar
Andrae, J., Björnbom, P., Edsberg, L. & Eriksson, L. 2002 A numerical study of side wall quenching with propane/air flames. Proc. Combust. Inst. 29 (1), 789795.Google Scholar
Bellenoue, M., Kageyama, T., Labuda, S. A. & Sotton, J. 2003 Direct measurement of laminar flame quenching distance in a closed vessel. Exp. Therm. Fluid Sci. 27 (3), 323331.Google Scholar
Boust, B., Sotton, J., Labuda, S. A. & Bellenoue, M. 2007 A thermal formulation for single-wall quenching of transient laminar flames. Combust. Flame 149 (3), 286294.CrossRefGoogle Scholar
Bruneaux, G., Akselvoll, K., Poinsot, T. & Ferziger, J. H. 1996 Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107 (1–2), 2744.Google Scholar
Bruneaux, G., Poinsot, T. & Ferziger, J. H. 1997 Premixed flame-wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191219.Google Scholar
Cheng, R. K., Bill, R. G. & Robben, F. 1981 Experimental study of combustion in a turbulent boundary layer. Symp. (Intl) Combust. 18 (1), 10211029.Google Scholar
Clendening, C. W., Shackleford, W. L. & Hilyard, R. 1981 Raman scattering measurements in a side-wall quench layer. Symp. (Intl) Combust. 18 (1), 15831590.Google Scholar
Connelly, L., Ogasawara, T., Lee, D., Greif, R. & Sawyer, R. F. 1993 Fall meeting. In Combustion Institute/Western States Section, Stanford, CA, Paper N. WSCI 93-077.Google Scholar
Creta, F. & Matalon, M. 2011a Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225264.Google Scholar
Creta, F. & Matalon, M. 2011b Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33 (1), 10871094.Google Scholar
Dabireau, F., Cuenot, B., Vermorel, O. & Poinsot, T. 2003 Interaction of flames of H2 + O2 with inert walls. Combust. Flame 135 (1–2), 123133.Google Scholar
Daniel, W. A. 1957 Flame quenching at the walls of an internal combustion engine. Symp. (Intl) Combust. 6 (1), 886894.Google Scholar
Enomoto, M. 2001 Head-on quenching of a premixed flame on the single wall surface. Jsme Intl J. Ser. B-Fluids Therm. Engng 44 (4), 624633.Google Scholar
Enomoto, M. 2002 Sidewall quenching of laminar premixed flames propagating along the single wall surface. Proc. Combust. Inst. 29 (1), 781787.CrossRefGoogle Scholar
Eteng, E., Ludford, G. S. S. & Matalon, M. 1986 Displacement effect of a flame in a stagnation-point flow. Phys. Fluids 29 (7), 21722180.CrossRefGoogle Scholar
Ezekoye, O. 1998 Heat transfer consequences of condensation during premixed flame quenching. Combust. Flame 112, 266269.Google Scholar
Ezekoye, O. & Greif, R. 1993 A comparison of one and two dimensional flame quenching: heat transfer results. In National Conference and Exposition on Heat Transfer, Atlanta, GA (United States), 8–11 Aug 1993.Google Scholar
Ezekoye, O., Greif, R. & Sawyer, R. F. 1992 Increased surface temperature effects on wall heat transfer during unsteady flame quenching. Symp. (Intl) Combust. 24 (1), 14651472.Google Scholar
Fairchild, P. W., Fleeter, R. D. & Fendell, F. E. 1985 Raman spectroscopy measurements of flame quenching in a duct-type crevice. Symp. (Intl) Combust. 20 (1), 8590.Google Scholar
Foucher, F., Burnel, S., Mounaïmrousselle, C., Boukhalfa, M. A., Renou, B. & Trinite, M. 2003 Flame wall interaction: effect of stretch. Exp. Therm. Fluid Sci. 27 (4), 431437.Google Scholar
Friedman, R. & Johnston, W. C. 1950 The wall-quenching of laminar propane flames as a function of pressure, temperature, and air-fuel ratio. J. Appl. Phys. 21 (8), 791795.Google Scholar
Glassman, I. & Yetter, R. A. 2008 Copyright - Combustion, 4th edn, p. 168.Google Scholar
Gruber, A., Sankaran, R., Hawkes, E. R. & Chen, J. H. 2010 Turbulent flame–wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 532.Google Scholar
Hawkes, E. R. & Cant, R. S. 2001 Physical and numerical realizability requirements for flame surface density approaches. Combust. Theor. Model. 5 (4), 699720.Google Scholar
Hocks, W., Peters, N. & Adomeit, G. 1981 Flame quenching in front of a cold wall under two-step kinetics. Combust. Flame 41, 157170.Google Scholar
Jarosinski, J. 1983 Flame quenching by a cold wall. Combust. Flame 50, 167175.Google Scholar
Jarosinski, J. 1986 A survey of recent studies on flame extinction. Prog. Energy Combust. Sci. 12 (2), 81116.Google Scholar
Jenkins, K. W. & Cant, R. S. 1999 Direct numerical simulation of turbulent flame kernels. In Recent Advances in DNS and LES, pp. 191202. Springer.Google Scholar
Jennings, M. J. & Morel, T. 1990 A computational study of wall temperature effects on engine heat transfer. SAE Paper 910459.Google Scholar
Karman, T. V. & Millan, G. 1953 Thermal theory of a laminar flame front near a cold wall. Symp. (Intl) Combust. 4 (1), 173177.Google Scholar
Labuda, S., Karrer, M., Sotton, J. & Bellenoue, M. 2011 Experimental study of single-wall flame quenching at high pressures. Combust. Sci. Technol. 183 (5), 409426.CrossRefGoogle Scholar
Lai, J. & Chakraborty, N. 2016a Effects of Lewis number on head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Flow Turb. Combust. 96 (2), 279308.Google Scholar
Lai, J. & Chakraborty, N. 2016b Statistical behavior of scalar dissipation rate in head-on quenching of turbulent premixed flames: a direct numerical simulation analysis. Combust. Sci. Technol. 188 (2), 250276.Google Scholar
Lai, J., Chakraborty, N. & Lipatnikov, A. 2017a Statistical behaviour of vorticity and enstrophy transport in head-on quenching of turbulent premixed flames. Eur. J. Mech. (B/Fluids) 65, 384397.CrossRefGoogle Scholar
Lai, J., Klein, M. & Chakraborty, N. 2018 Direct numerical simulation of head-on quenching of statistically planar turbulent premixed methane–air flames using a detailed chemical mechanism. Flow Turb. Combust.; doi:10.1007/s10494-018-9907-5.Google Scholar
Lai, J., Moody, A. & Chakraborty, N. 2017b Turbulent kinetic energy transport in head-on quenching of turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. Fuel 199, 456477.Google Scholar
Lewis, B. & Elbe, G. V. 1987 Combustion waves in laminar flow – combustion, flames and explosions of gases. In Combustion Flames Explosions of Gases, 3rd edn, chap. V, pp. 215417.Google Scholar
Lodato, G., Domingo, P. & Vervisch, L. 2008 Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227 (10), 51055143.Google Scholar
Lu, J. H., Ezekoye, O., Greif, R. & Sawyer, R. F. 1991 Unsteady heat transfer during side wall quenching of a laminar flame. Symp. (Intl) Combust. 23 (1), 441446.Google Scholar
Mann, M., Jainski, C., Euler, M., Bhm, B. & Dreizler, A. 2014 Transient flame-wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements. Combust. Flame 161 (9), 23712386.Google Scholar
Ng, T. T., Cheng, R. K., Robben, F. & Talbot, L. 1982 Combustion-turbulence interaction in the turbulent boundary layer over a hot surface. Symp. (Intl) Combust. 19 (1), 359366.Google Scholar
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384 (384), 107132.Google Scholar
Pitsch, H. 2006 Large eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38 (1), 453482.Google Scholar
Poinsot, T., Haworth, D. C. & Bruneaux, G. 1993 Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118132.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. R.t. Edwards Inc.Google Scholar
Popp, P. & Baum, M. 1997 Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108 (3), 327348.Google Scholar
Popp, P., Smooke, M. & Baum, M. 1996 Heterogeneous/homogeneous reaction and transport coupling during flame-wall interaction. Symp. (Intl) Combust. 26 (2), 26932700.Google Scholar
Putnam, A. A. & Jensen, R. A. 1948 Application of dimensionless numbers to flash-back and other combustion phenomena. Symp. Combust. Flame Explosion Phenom. 3 (1), 8998.Google Scholar
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. Nasa Sti/recon Technical Report N 81.Google Scholar
Saffman, M. 1984 Parametric studies of a side wall quench layer. Combust. Flame 55 (2), 141159.CrossRefGoogle Scholar
Sellmann, J., Lai, J., Kempf, A. M. & Chakraborty, N. 2017 Flame surface density based modelling of head-on quenching of turbulent premixed flames. Proc. Combust. Inst. 36 (2), 18171825.CrossRefGoogle Scholar
Sotton, J., Boust, B., Labuda, S. A. & Bellenoue, M. 2007 Head-on quenching of transient laminar flame: heat flux and quenching distance measurements. Combust. Sci. Technol. 177 (7), 13051322.Google Scholar
Tayebi, B., Galizzi, C., Guo, H. & Escudie, D. 2008 An experimental study of flame-wall interaction: temperature analysis near the wall. Riv. Trimestrale Di Diritto E Proc. Civile 58, 12211256.Google Scholar
Veynante, D. & Vervisch, L. 2002 Turbulent combustion modeling. Prog. Energy Combust. Sci. 28 (3), 193266.Google Scholar
Vosen, S. R., Greif, R. & Westbrook, C. K. 1985 Unsteady heat transfer during laminar flame quenching. Symp. (Intl) Combust. 20 (1), 7583.Google Scholar
Westbrook, C. K., Adamczyk, A. A. & Lavoie, G. A. 1981 A numerical study of laminar flame wall quenching. Combust. Flame 40, 8199.Google Scholar
Wichman, I. S. & Bruneaux, G. 1995 Head-on quenching of a premixed flame by a cold wall. Combust. Flame 103 (4), 296310.Google Scholar
Wray, A. A. 1991 Minimal Storage Time-Advancement Schemes for Spectral Methods. NASA Ames Research Center.Google Scholar
Yoo, C. S. & Im, H. G. 2007 Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theor. Model. 11 (2), 259286.Google Scholar
Yoo, C. S., Wang, Y., Trouvé, A. & Im, H. G. 2005 Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theor. Model. 9 (4), 617646.Google Scholar
Zhang, Y., Bray, K. N. C. & Rogg, B. 1996 Temporally and spatially resolved investigation of flame propagation and extinction in the vicinity of walls. Combust. Sci. Technol. 113 (1), 255271.Google Scholar