Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T04:32:30.927Z Has data issue: false hasContentIssue false

Axial friction coefficient of turbulent spiral Poiseuille flows

Published online by Cambridge University Press:  30 April 2024

M. Manna
Affiliation:
Dipartimento di Ingegneria Meccanica per l'Energetica, Università di Napoli ‘Federico II’, via Claudio 21, 80125 Naples, Italy
A. Vacca
Affiliation:
Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Napoli ‘Federico II’, via Claudio 21, 80125 Naples, Italy
R. Verzicco*
Affiliation:
Dipartimento di Ingegneria Industriale, Università di Roma ‘Tor Vergata’, via del Politecnico 1, 00133 Roma, Italy Gran Sasso Science Institute, Viale Francesco Crispi, 7, 67100 L'Aquila, Italy PoF, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
*
Email address for correspondence: verzicco_JFM@uniroma2.it

Abstract

Direct numerical simulations of spiral Poiseuille flows in a narrow gap geometry are performed with the aim of identifying the mechanisms governing the dynamics of the axial friction coefficient. The investigation has explored a small portion of the Reynolds number–Taylor number phase space ($600 \leq Re \leq 5766$ and $1500 \leq Ta \leq 5000$), for which reference experimental results are available. The study is focused on the mechanism leading to the enhancement of the axial friction coefficient with the Taylor number when the Reynolds number is kept constant. The analysis of the spatial distribution of the Reynolds stress tensor and of the turbulent energy budget has evidenced the key role of the pressure–strain correlation in the energy transfer from the azimuthal to the axial component. The latter eventually determines the increase of the axial friction coefficient through the enhanced radial mixing of axial momentum. Data have also shown that the flow dynamics is heavily dependent on the $Ta/Re$ ratio, and different regimes develop (ranging from laminar to turbulent), each with peculiar behaviours.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bühler, K. & Polifke, N. 1990 Dynamical behaviour of Taylor vortices with superimposed axial flow. In Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems (ed. F.H. Busse & L. Kramer). Plenum.CrossRefGoogle Scholar
Chung, S.Y. & Sung, H.J. 2005 Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder. Intl J. Heat Fluid Flow 26, 191203.CrossRefGoogle Scholar
Escudier, M.P. & Gouldson, I.W. 1995 Concentric annular flow with centerbody rotation of a Newtonian and a shear-thinning liquid. Intl J. Heat Fluid Flow 16, 156162.CrossRefGoogle Scholar
Jung, S.Y. & Sung, H.J. 2006 Characterization of the three-dimensional turbulent boundary layer in a concentric annulus with a rotating inner cylinder. Phys. Fluids 18, 115102.CrossRefGoogle Scholar
van Kan, J. 1986 A second order accurate pressure correction scheme for viscous incompressible flow. J. Sci. Stat. Comput. 7, 870891.CrossRefGoogle Scholar
Kataoka, K., Doi, H. & Komai, T. 1977 Heat/mass transfer in Taylor vortex flow with constant axial flow rates. Intl J. Heat Mass Transfer 20, 5763.CrossRefGoogle Scholar
Lueptow, R.M., Docter, A. & Min, K. 1992 Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluids 4 (11), 24462455.CrossRefGoogle Scholar
Manna, M. & Vacca, A. 1999 An efficient method for the solution of the incompressible Navier–Stokes equations in cylindrical geometries. J. Comput. Phys. 151, 563584.CrossRefGoogle Scholar
Manna, M. & Vacca, A. 2001 Scaling properties of turbulent pipe flow at low Reynolds number. Comput. Fluids 30, 393415.CrossRefGoogle Scholar
Manna, M. & Vacca, A. 2009 Torque reduction in Taylor–Couette flows subject to an axial pressure gradient. J. Fluid Mech. 639, 373401.CrossRefGoogle Scholar
Manna, M., Vacca, A. & Verzicco, R. 2012 Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis. J. Fluid Mech. 700, 246282.CrossRefGoogle Scholar
Manna, M., Vacca, A. & Verzicco, R. 2015 Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 2. Phase-averaged analysis. J. Fluid Mech. 766, 272296.CrossRefGoogle Scholar
Manna, M., Vacca, A. & Verzicco, R. 2020 Pulsating spiral Poiseuille flow. J. Fluid Mech. 890, A21.CrossRefGoogle Scholar
Manna, M., Vacca, A. & Verzicco, R. 2022 Reverse transition of a turbulent spiral Poiseuille flow at $Ta = 1500$. J. Fluid Mech. 941, A6.CrossRefGoogle Scholar
Matsukawa, Y. & Tsukahara, T. 2022 Subcritical transition of Taylor–Couette–Poiseuille flow at high radius ratio. Phys. Fluids 34, 074109.CrossRefGoogle Scholar
Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341377.CrossRefGoogle Scholar
Nouri, J.M. & Whitelaw, J.H. 1994 Flow of Newtonian and non-Newtonian fluids in a concentric annulus with rotation of the inner cylinder. Trans. ASME J. Fluids Engng 116 (4), 821827.CrossRefGoogle Scholar
Ohsawa, A., Murata, A. & Iwamoto, K. 2016 Through-flow effects on Nusselt number and torque coefficient in Taylor–Couette–Poiseuille flow investigated by large eddy simulation. J. Therm. Sci. Technol. 11 (2), Paper No. 16-00356.CrossRefGoogle Scholar
Orlandi, P. & Fatica, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 4372.CrossRefGoogle Scholar
Pfleiderer, C. & Petermann, H. 1952 Strömungsmaschinen. Springer.CrossRefGoogle Scholar
Poncet, S., Viazzo, S. & Oguic, R. 2014 Large eddy simulations of Taylor–Couette–Poiseuille flows in a narrow-gap system. Phys. Fluids 26, 105108.CrossRefGoogle Scholar
Renard, N. & Deck, S. 2016 A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339367.CrossRefGoogle Scholar
Walker, J.E., Whan, G.A. & Rothfus, R.R. 1955 Fluid friction in noncircular ducts. AIChE J. 3 (4), 484488.CrossRefGoogle Scholar
Yamada, Y. 1962 Resistance of a flow through an annulus with an inner rotating cylinder. Bull. JSME 5 (18), 302310.CrossRefGoogle Scholar