Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-13T06:28:32.407Z Has data issue: false hasContentIssue false

A combined active control method of restricted nonlinear model and machine learning technology for drag reduction in turbulent channel flow

Published online by Cambridge University Press:  13 September 2024

Bing-Zheng Han
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Wei-Xi Huang*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Chun-Xiao Xu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email address for correspondence: hwx@tsinghua.edu.cn

Abstract

The practical implementation of machine learning in flow control is limited due to its significant training expenses. In the present study the convolutional neural network (CNN) trained with the data of the restricted nonlinear (RNL) model is used to predict the normal velocity on a detection plane at $y^+=10$ in a turbulent channel flow, and the predicted velocity is used as wall blowing and suction for drag reduction. An active control test is carried out by using the well-trained CNN in direct numerical simulation (DNS). Substantial drag reduction rates up to 19 % and 16 % are obtained based on the spanwise and streamwise wall shear stresses, respectively. Furthermore, we explore the online control of wall turbulence by combining the RNL model with reinforcement learning (RL). The RL is constructed to determine the optimal wall blowing and suction based on its observation of the wall shear stresses without using the label data on the detection plane for training. The controlling and training processes are conducted synchronously in a RNL flow field. The control strategy discovered by RL has similar drag reduction rates with those obtained previously by the established method. Also, the training cost decreases by over thirty times at $Re_{\tau }=950$ compared with the DNS-RL model. The present results provide a perspective that combining the RNL model with machine learning control for drag reduction in wall turbulence can be effective and computationally economical. Also, this approach can be easily extended to flows at higher Reynolds numbers.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizard, F. & Biau, D. 2019 Restricted nonlinear model for high-and low-drag events in plane channel flow. J. Fluid Mech. 864, 221243.CrossRefGoogle Scholar
Bewley, T.R. & Protas, B. 2004 Skin friction and pressure: the ‘footprints’ of turbulence. Phys. D: Nonlinear Phenom. 196 (1–2), 2844.CrossRefGoogle Scholar
Breiman, L. 2001 Random forests. Mach. Learn. 45, 532.CrossRefGoogle Scholar
Bretheim, J.U., Meneveau, C. & Gayme, D.F. 2015 Standard logarithmic mean velocity distribution in a band-limited restricted nonlinear model of turbulent flow in a half-channel. Phys. Fluids 27 (1), 011702.CrossRefGoogle Scholar
Bretheim, J.U., Meneveau, C. & Gayme, D.F. 2018 A restricted nonlinear large eddy simulation model for high Reynolds number flows. J. Turbul. 19 (2), 141166.CrossRefGoogle Scholar
Chang, Y., Collis, S.S. & Ramakrishnan, S. 2002 Viscous effects in control of near-wall turbulence. Phys. Fluids 14 (11), 40694080.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.CrossRefGoogle Scholar
Chung, Y.M. & Talha, T. 2011 Effectiveness of active flow control for turbulent skin friction drag reduction. Phys. Fluids 23 (2), 025102.CrossRefGoogle Scholar
Constantinou, N.C., Lozano-Durán, A., Nikolaidis, M.-A., Farrell, B.F., Ioannou, P.J. & Jiménez, J. 2014 Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS. J. Phys.: Conf. Ser. 506, 012004.Google Scholar
Deng, B.-Q., Huang, W.-X. & Xu, C.-X. 2016 Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at $re \tau = 1000$. J. Turbul. 17 (8), 758786.CrossRefGoogle Scholar
Deng, B.-Q. & Xu, C.-X. 2012 Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. J. Fluid Mech. 710, 234259.CrossRefGoogle Scholar
Fan, D., Yang, L., Wang, Z., Triantafyllou, M.S. & Karniadakis, G.E. 2020 a Reinforcement learning for bluff body active flow control in experiments and simulations. Proc. Natl Acad. Sci. 117 (42), 2609126098.CrossRefGoogle ScholarPubMed
Fan, D., Yang, L., Wang, Z., Triantafyllou, M.S. & Karniadakis, G.E. 2020 b Reinforcement learning for bluff body active flow control in experiments and simulations. Proc. Natl Acad. Sci. 117 (42), 2609126098.CrossRefGoogle ScholarPubMed
Farrell, B.F. & Ioannou, P.J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.CrossRefGoogle Scholar
Farrell, B.F., Ioannou, P.J., Jiménez, J., Constantinou, N.C., Lozano-Durán, A. & Nikolaidis, M.-A. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid Mech. 809, 290315.CrossRefGoogle Scholar
Fukagata, K. & Kasagi, N. 2004 Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress. Intl J. Heat Fluid Flow 25 (3), 341350.CrossRefGoogle Scholar
Fukami, K., Nabae, Y., Kawai, K. & Fukagata, K. 2019 Synthetic turbulent inflow generator using machine learning. Phys. Rev. Fluids 4 (6), 064603.CrossRefGoogle Scholar
Gayme, D.F. & Minnick, B.A. 2019 Coherent structure-based approach to modeling wall turbulence. Phys. Rev. Fluids 4 (11), 110505.CrossRefGoogle Scholar
Ge, M.-W., Xu, C.-X. & Cui, G.-X. 2011 Detection of near-wall streamwise vortices by measurable information at wall. J. Phys.: Conf. Ser. 318, 022040.Google Scholar
Guastoni, L., Rabault, J., Schlatter, P., Azizpour, H. & Vinuesa, R. 2023 Deep reinforcement learning for turbulent drag reduction in channel flows. Eur. Phys. J. E 46 (4), 27.CrossRefGoogle ScholarPubMed
Guo, X., Li, W. & Iorio, F. 2016 Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, United States, pp. 481–490.Google Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hammond, E.P., Bewley, T.R. & Moin, P. 1998 Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys. Fluids 10 (9), 24212423.CrossRefGoogle Scholar
Han, B.-Z. & Huang, W.-X. 2020 Active control for drag reduction of turbulent channel flow based on convolutional neural networks. Phys. Fluids 32 (9), 095108.CrossRefGoogle Scholar
Han, B.-Z., Huang, W.-X. & Xu, C.-X. 2022 Deep reinforcement learning for active control of flow over a circular cylinder with rotational oscillations. Intl J. Heat Fluid Flow 96, 109008.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Kasagi, N., Suzuki, Y. & Fukagata, K. 2009 Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231251.CrossRefGoogle Scholar
Kim, E. & Choi, H. 2017 Linear proportional–integral control for skin-friction reduction in a turbulent channel flow. J. Fluid Mech. 814, 430451.CrossRefGoogle Scholar
Kim, J. 2011 Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 369 (1940), 13961411.CrossRefGoogle ScholarPubMed
Kim, J. & Lee, C. 2020 Prediction of turbulent heat transfer using convolutional neural networks. J. Fluid Mech. 882, A18.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kim, K., Baek, S.-J. & Sung, H.J. 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38 (2), 125138.CrossRefGoogle Scholar
Koumoutsakos, P. 1999 Vorticity flux control for a turbulent channel flow. Phys. Fluids 11 (2), 248250.CrossRefGoogle Scholar
Kravchenko, A.G., Choi, H. & Moin, P. 1993 On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids A: Fluid Dyn. 5 (12), 33073309.CrossRefGoogle Scholar
Lee, C., Kim, J., Babcock, D. & Goodman, R. 1997 Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9 (6), 17401747.CrossRefGoogle Scholar
Lee, C., Kim, J. & Choi, H. 1998 Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245258.CrossRefGoogle Scholar
Lee, K.H., Cortelezzi, L., Kim, J. & Speyer, J. 2001 Application of reduced-order controller to turbulent flows for drag reduction. Phys. Fluids 13 (5), 13211330.CrossRefGoogle Scholar
Lee, T., Kim, J. & Lee, C. 2023 Turbulence control for drag reduction through deep reinforcement learning. Phys. Rev. Fluids 8 (2), 024604.CrossRefGoogle Scholar
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. & Wierstra, D. 2015 Continuous control with deep reinforcement learning. Preprint, arXiv:1509.02971.Google Scholar
Lorang, L.V., Podvin, B. & Le Quéré, P. 2008 Application of compact neural network for drag reduction in a turbulent channel flow at low Reynolds numbers. Phys. Fluids 20 (4), 045104.CrossRefGoogle Scholar
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. 2013 Playing atari with deep reinforcement learning. Preprint, arXiv:1312.5602.Google Scholar
Morimoto, K., Iwamoto, K., Suzuki, Y. & Kasagi, N. 2002 Genetic algorithm-based optimization of feedback control scheme for wall turbulence. In Proceedings of the 3rd Symposium on Smart Control of Turbulence, pp. 107–113.Google Scholar
Nair, V. & Hinton, G.E. 2010 Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814.Google Scholar
Paris, R., Beneddine, S. & Dandois, J. 2021 Robust flow control and optimal sensor placement using deep reinforcement learning. J. Fluid Mech. 913, A25.CrossRefGoogle Scholar
Park, J. & Choi, H. 2020 Machine-learning-based feedback control for drag reduction in a turbulent channel flow. J. Fluid Mech. 904, A24.CrossRefGoogle Scholar
Rabault, J., Kuchta, M., Jensen, A., Réglade, U. & Cerardi, N. 2019 Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech. 865, 281302.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Smith, T.R., Moehlis, J. & Holmes, P. 2005 Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41, 275307.CrossRefGoogle Scholar
Sonoda, T., Liu, Z., Itoh, T. & Hasegawa, Y. 2023 Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow. J. Fluid Mech. 960, A30.CrossRefGoogle Scholar
Tang, H., Rabault, J., Kuhnle, A., Wang, Y. & Wang, T. 2020 Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning. Phys. Fluids 32 (5), 053605.CrossRefGoogle Scholar
Thomas, V.L., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2015 A minimal model of self-sustaining turbulence. Phys. Fluids 27 (10), 105104.CrossRefGoogle Scholar
Thomas, V.L., Lieu, B.K., Jovanović, M.R., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2014 Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow. Phys. Fluids 26 (10), 105112.CrossRefGoogle Scholar
Tibshirani, R. 1996 Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B: Stat. Methodol. 58 (1), 267288.CrossRefGoogle Scholar