Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T20:53:06.936Z Has data issue: false hasContentIssue false

Decomposition of the mean skin-friction drag in compressible turbulent channel flows

Published online by Cambridge University Press:  18 July 2019

Weipeng Li*
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, 200240, China Engineering Research Center of Gas Turbine and Civil Aero Engine, Ministry of Education, China
Yitong Fan
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, 200240, China
Davide Modesti
Affiliation:
Department of Mechanical Engineering, The University of Melbourne, Victoria 3010, Australia
Cheng Cheng
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, 200240, China
*
Email address for correspondence: liweipeng@sjtu.edu.cn

Abstract

The mean skin-friction drag in a wall-bounded turbulent flow can be decomposed into different physics-informed contributions based on the mean and statistical turbulence quantities across the wall layer. Following Renard & Deck’s study (J. Fluid Mech., vol. 790, 2016, pp. 339–367) on the skin-friction drag decomposition of incompressible wall-bounded turbulence, we extend their method to a compressible form and use it to investigate the effect of density and viscosity variations on skin-friction drag generation, using direct numerical simulation data of compressible turbulent channel flows. We use this novel decomposition to study the skin-friction contributions associated with the molecular viscous dissipation and the turbulent kinetic energy production and we investigate their dependence on Reynolds and Mach number. We show that, upon application of the compressibility transformation of Trettel & Larsson (Phys. Fluids, vol. 28, 2016, 026102), the skin-friction drag contributions can be only partially transformed into the equivalent incompressible ones, as additional terms appear representing deviations from the incompressible counterpart. Nevertheless, these additional contributions are found to be negligible at sufficiently large equivalent Reynolds number and low Mach number. Moreover, we derive an exact relationship between the wall heat flux coefficient and the skin-friction drag coefficient, which allows us to relate the wall heat flux to the skin-friction generation process.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H. & Antonia, R. A. 2016 Relationship between the energy dissipation function and the skin friction law in a turbulent channel flow. J. Fluid Mech. 798, 140164.Google Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.Google Scholar
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365 (1852), 665681.Google Scholar
Bannier, A., Garnier, É. & Sagaut, P. 2015 Riblet flow model based on an extended FIK identity. Flow Turbul. Combust. 95 (2-3), 351376.Google Scholar
Deck, S., Renard, N., Laraufie, R. & Weiss, P. É 2014 Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Re 𝜃 = 13 650. J. Fluid Mech. 743, 202248.Google Scholar
van Driest, E. R. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18 (3), 145160.Google Scholar
Duan, L., Beekman, I. & Martin, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.Google Scholar
Duan, L., Beekman, I. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.Google Scholar
Ebadi, A., Mehdi, F. & White, C. M. 2015 An exact integral method to evaluate wall heat flux in spatially developing two-dimensional wall-bounded flows. Intl J. Heat Mass Transfer 84, 856861.Google Scholar
Fan, Y., Cheng, C. & Li, W. 2019 Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows. Z. Angew. Math. Mech. 40 (3), 331342.Google Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.Google Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.Google Scholar
Gad-el Hak, M. 1994 Interactive control of turbulent boundary layers – A futuristic overview. AIAA J. 32 (9), 17531765.Google Scholar
de Giovanetti, M., Hwang, Y. & Choi, H. 2016 Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511538.Google Scholar
Gomez, T., Flutet, V. & Sagaut, P. 2009 Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E 79 (3), 035301.Google Scholar
Huang, P. G. & Coleman, G. N. 1994 Van Driest transformation and compressible wall-bounded flows. AIAA J. 32 (10), 21102113.Google Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Hutchins, N. & Marusic, I. 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.Google Scholar
Hutchins, N. & Marusic, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.Google Scholar
Hwang, J. & Sung, H. J. 2017 Influence of large-scale motions on the frictional drag in a turbulent boundary layer. J. Fluid Mech. 829, 751779.Google Scholar
Iwamoto, K., Fukagata, K., Kasagi, N. & Suzuki, Y. 2005 Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers. Phys. Fluids 17 (1), 011702.Google Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.Google Scholar
Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P. 2015 Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55, 132142.Google Scholar
Kim, J. S., Hwang, J., Yoon, M., Ahn, J. & Sung, H. J. 2017 Influence of a large-eddy breakup device on the frictional drag in a turbulent boundary layer. Phys. Fluids 29 (6), 065103.Google Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.Google Scholar
Laadhari, F. 2007 Reynolds number effect on the dissipation function in wall-bounded flows. Phys. Fluids 19 (3), 038101.Google Scholar
Lee, J. H. & Sung, H. J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.Google Scholar
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.Google Scholar
Mehdi, F., Johansson, T. G., White, C. M. & Naughton, J. W. 2014 On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp. Fluids 55 (1), 1656.Google Scholar
Mehdi, F. & White, C. M. 2011 Integral form of the skin friction coefficient suitable for experimental data. Exp. Fluids 50 (1), 4351.Google Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.Google Scholar
Modesti, D. & Pirozzoli, S. 2019 Direct numerical simulation of supersonic pipe flow at moderate Reynolds number. Intl J. Heat Fluid Flow 76, 100112.Google Scholar
Modesti, D., Pirozzoli, S., Orlandi, P. & Grasso, F. 2018 On the role of secondary motions in turbulent square duct flow. J. Fluid Mech. 847, R1.Google Scholar
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.Google Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273308.Google Scholar
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. Mécanique de la Turbulence 367, 380.Google Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11 (4), 943945.Google Scholar
Nonomura, T. & Fujii, K. 2009 Effects of difference scheme type in high-order weighted compact nonlinear schemes. J. Comput. Phys. 228 (10), 35333539.Google Scholar
Nonomura, T., Iizuka, N. & Fujii, K. 2010 Freestream and vortex preservation properties of high-order weno and wcns on curvilinear grids. Comput. Fluids 39 (2), 197214.Google Scholar
Nonomura, T., Li, W., Goto, Y. & Fujii, K. 2011 Improvements of efficiency in seventh-order weighted compact nonlinear scheme. CFD J. 18 (2), 180186.Google Scholar
Patel, A., Boersma, B. J. & Pecnik, R. 2016 The influence of near-wall density and viscosity gradients on turbulence in channel flows. J. Fluid Mech. 809, 793820.Google Scholar
Patel, A., Peeters, J. W., Boersma, B. J. & Pecnik, R. 2015 Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095101.Google Scholar
Pecnik, R. & Patel, A. 2017 Scaling and modelling of turbulence in variable property channel flows. J. Fluid Mech. 823, R1.Google Scholar
Peet, Y. & Sagaut, P. 2009 Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Phys. Fluids 21 (10), 105105.Google Scholar
Renard, N. & Deck, S. 2016 A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339367.Google Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.Google Scholar
Walz, A. 1959 Compressible turbulent boundary layers with heat transfer and pressure gradient in flow direction. J. Res. Natl Bur. Stand. 63, 5370.Google Scholar
Yoon, M., Ahn, J., Hwang, J. & Sung, H. J. 2016 Contribution of velocity–vorticity correlations to the frictional drag in wall-bounded turbulent flows. Phys. Fluids 28 (8), 081702.Google Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.Google Scholar