Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-16T02:19:38.571Z Has data issue: false hasContentIssue false

Direct numerical simulations of roughness-induced transition in supersonic boundary layers

Published online by Cambridge University Press:  06 January 2012

Suman Muppidi
Affiliation:
Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
Krishnan Mahesh*
Affiliation:
Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
*
Email address for correspondence: mahesh@aem.umn.edu

Abstract

Direct numerical simulations are used to study the laminar to turbulent transition of a Mach 2.9 supersonic flat plate boundary layer flow due to distributed surface roughness. Roughness causes the near-wall fluid to slow down and generates a strong shear layer over the roughness elements. Examination of the mean wall pressure indicates that the roughness surface exerts an upward impulse on the fluid, generating counter-rotating pairs of streamwise vortices underneath the shear layer. These vortices transport near-wall low-momentum fluid away from the wall. Along the roughness region, the vortices grow stronger, longer and closer to each other, and result in periodic shedding. The vortices rise towards the shear layer as they advect downstream, and the resulting interaction causes the shear layer to break up, followed quickly by a transition to turbulence. The mean flow in the turbulent region shows a good agreement with available data for fully developed turbulent boundary layers. Simulations under varying conditions show that, where the shear is not as strong and the streamwise vortices are not as coherent, the flow remains laminar.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. J. Fluid Mech. 175, 142.CrossRefGoogle Scholar
2. Berry, S. A., Hamilton, H. H. II & Wurster, K. E. 2006 Effect of computational method on discrete roughness correlations for shuttle orbiter. J. Spacecr. Rockets 43 (4), 842852.CrossRefGoogle Scholar
3. Berry, S. A. & Horvath, T. J. 2007 Discrete roughness transition for hypersonic flight vehicles. AIAA Paper 2007-0307.Google Scholar
4. Berry, S. A., Horvath, T. J., Hollis, B. R., Thompson, R. A. & Hamilton, H. H. II 2001 X-33 hypersonic boundary-layer transition. J. Spacecr. Rockets 38 (5), 646657.CrossRefGoogle Scholar
5. Bookey, P. B., Wyckham, C., Smits, A. J. & Martin, M. P. 2005 New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA Paper 2005-309.CrossRefGoogle Scholar
6. Choudhari, M. & Fischer, P. 2005 Roughness-induced transient growth AIAA Paper 2005-4765.CrossRefGoogle Scholar
7. Choudhari, M., Li, F., Wu, M., Chang, C. L., Edwards, J., Kegerise, M. & King, R. 2010 Laminar–turbulent transition behind discrete roughness elements in a high-speed boundary layer. AIAA Paper 2010-1575.CrossRefGoogle Scholar
8. Corke, T. C., Bar-Sever, A. & Morkovin, M. V. 1986 Experiments on transition enhancement by distributed roughness. Phys. Fluids 29 (10), 31993213.CrossRefGoogle Scholar
9. Ekoto, I. W., Bowersox, R. D. W., Beutner, T. & Goss, L. 2008 Supersonic boundary layers with periodic surface roughness. AIAA. J. 46 (2), 486497.CrossRefGoogle Scholar
10. Elena, M., Lacharme, J. & Gaviglio, J. 1985 Comparison of hot-wire and laser Doppler anemometry methods in supersonic turbulent boundary layers. In Proceedings of the International Symposium on Laser Anemometry. (ed. Dybb, A. & Pfund, P. A. ). ASME.Google Scholar
11. Ergin, F. G. & White, E. B. 2006 Unsteady and transitional flows behind roughness elements. AIAA J. 44 (11), 25042514.CrossRefGoogle Scholar
12. Federov, A. 2010 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
13. Gatski, T. B. & Erlebacher, G. 2002 Numerical simulation of a spatially evolving supersonic turbulent boundary layer. NASA Tech. Memo. 211934.Google Scholar
14. Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid. Mech. 414, 133.CrossRefGoogle Scholar
15. Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
16. Klebanoff, P. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NASA Rep. 1247.Google Scholar
17. Klebanoff, P. S. & Tidstrom, K. D. 1972 Mechanism by which a two-dimensional roughness element induces boundary-layer transition. Phys. Fluids 15 (7), 11731188.CrossRefGoogle Scholar
18. Loginov, M. S., Adams, N. A. & Zheltovodov, A. A. 2006 Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid. Mech. 565, 135169.CrossRefGoogle Scholar
19. Mason, P. J. & Morton, B. R. 1987 Trailing vortices in the wakes of surface-mounted obstacles. J. Fluid Mech. 175, 247293.CrossRefGoogle Scholar
20. Morkovin, M. V., Reshotko, E. & Herbert, T. 1994 Transition in open flow systems: a reassessment. Bull. Am. Phys. Soc. 39, 131.Google Scholar
21. Park, N. & Mahesh, K. 2007 Numerical and modelling issues in LES of compressible turbulent flows on unstructured grids. AIAA Paper 2007-722.CrossRefGoogle Scholar
22. Reda, D. C 2002 Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rockets 39 (2), 161167.CrossRefGoogle Scholar
23. Redford, J. A., Sandham, N. D. & Roberts, G. T. 2010 Roughness-induced transition of compressible laminar boundary layers. In Proceedings of the Seventh IUTAM Symposium on Laminar–Turbulent Transition, Stockholm, Sweden, 2009. (ed. Schlatter, P. & Henningson, D. S. ). Seventh IUTAM Symposium on Laminar-Turbulent Transition, IUTAM Bookseries 18 , pp. 337342. Springer Science+Business Media B.V.CrossRefGoogle Scholar
24. Reshotko, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8, 311349.CrossRefGoogle Scholar
25. Reshotko, E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 10671075.CrossRefGoogle Scholar
26. Reshotko, E. 2007 Is a meaningful transition criterion? AIAA Paper 2007-943.CrossRefGoogle Scholar
27. Reshotko, E. 2008 Roughness-induced transition. Transient growth in 3-D and supersonic flow. In RTO-AVT/VKI Lectures Series, Advances in Laminar–Turbulent Transition Modelling VKI, Brussels, Belgium, June 2008.Google Scholar
28. Reshotko, E. & Tumin, A. 2004 Role of transient growth in roughness-induced transition. AIAA J. 42 (4), 766770.CrossRefGoogle Scholar
29. Ringuette, M. J., Bookey, P. B., Wyckham, W. & Smits, A. J. 2009 Experimental study of a Mach 3 compression ramp interaction at . AIAA J. 47, 373385.CrossRefGoogle Scholar
30. Roberts, S. K. & Yaras, M. I. 2005 Boundary-layer transition affected by surface roughness and free-stream turbulence. Trans. ASME: J. Fluids Engng 127, 449457.Google Scholar
31. Sahoo, D., Papageorge, M. & Smits, A. J. 2010 PIV experiments on a rough-wall hypersonic turbulent boundary layer. AIAA Paper 2010-4471.CrossRefGoogle Scholar
32. Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413440.CrossRefGoogle Scholar
33. Schlichting, H. T. 1963 Boundary Layer Theory. McGraw-Hill.Google Scholar
34. Schneider, S. P. 2008 Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness. J. Spacecr. Rockets 45 (6), 10901105.CrossRefGoogle Scholar
35. Spalart, P. R. 1998 Direct simulation of a turbulent boundary layer up to . J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
36. Stetson, K. F. 1990 Comments on hypersonic boundary-layer transition. Wright Research and Development Center, WRDC-TR-90-3057.Google Scholar
37. Tani, I. 1969 Boundary layer transition. Annu. Rev. Fluid Mech. 1, 169196.CrossRefGoogle Scholar
38. Tumin, A. & Reshotko, E. 2003 Optimal disturbances in compressible boundary layers. AIAA J. 41 (12), 23572363.CrossRefGoogle Scholar
39. Tumin, A. & Reshotko, E. 2004 The problem of boundary-layer flow encountering a three-dimensional hump revisited. AIAA Paper 2004-101.Google Scholar
40. Van Driest, E. R. & Blumer, C. B. 1962 Boundary layer transition at supersonic speeds – three dimensional roughness effects (spheres). J. Aerosp. Sci. 29, 909916.CrossRefGoogle Scholar
41. Van Driest, E. R. & McCauley, W. D. 1960 Measurements of the effect of two-dimensional and three-dimensional roughness elements on boundary layer transition. J. Aero. Sci. 27, 261271.Google Scholar
42. Wang, X. & Zhong, X. 2008 Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness. Journal of Spacecr. Rockets 45 (6), 11651175.CrossRefGoogle Scholar
43. White, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14 (12), 44294439.CrossRefGoogle Scholar
44. Wu, M. & Martin, M. P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45, 879889.CrossRefGoogle Scholar
45. Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 632, 541.CrossRefGoogle Scholar
46. Zheltovodov, A. A., Trofimov, V. M., Schulein, E. & Yakovlev, V. N. 1990 An experimental documentation of supersonic turbulent flows in the vicinity of forward- and backward-facing ramps. Tech. Rep. 2030. Institute of Theoretical and Applied Mechanics, USSR Academy of Sciences, Novosibirsk.Google Scholar
47. Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar