Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T23:16:17.741Z Has data issue: false hasContentIssue false

Dynamics of inertial particles in a turbulent von Kármán flow

Published online by Cambridge University Press:  26 January 2011

R. VOLK*
Affiliation:
International Collaboration for Turbulence Research, Laboratoire de Physique de l'École Normale Supérieure de Lyon, UMR5672, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France
E. CALZAVARINI
Affiliation:
International Collaboration for Turbulence Research, Laboratoire de Physique de l'École Normale Supérieure de Lyon, UMR5672, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France
E. LÉVÊQUE
Affiliation:
International Collaboration for Turbulence Research, Laboratoire de Physique de l'École Normale Supérieure de Lyon, UMR5672, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France
J.-F. PINTON
Affiliation:
International Collaboration for Turbulence Research, Laboratoire de Physique de l'École Normale Supérieure de Lyon, UMR5672, CNRS et Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France
*
Email address for correspondence: romain.volk@ens-lyon.fr

Abstract

We study the dynamics of neutrally buoyant particles with diameters varying in the range [1, 45] in Kolmogorov scale units (η) and Reynolds numbers based on Taylor scale (Reλ) between 590 and 1050. One component of the particle velocity is measured using an extended laser Doppler velocimetry at the centre of a von Kármán flow, and acceleration is derived by differentiation. We find that the particle acceleration variance decreases with increasing diameter with scaling close to (D/η)−2/3, in agreement with previous observations, and with a hint for an intermittent correction as suggested by arguments based on scaling of pressure spatial increments. The characteristic time of acceleration autocorrelation increases more strongly than previously reported in other experiments, and possibly varying linearly with D/η. Further analysis shows that the probability density functions of the acceleration have smaller wings for larger particles; their flatness decreases as well, as expected from the behaviour of pressure increments in turbulence when intermittency corrections are taken into account. We contrast our measurements with previous observations in wind-tunnel turbulent flows and numerical simulations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arneodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R. T., Grauer, R., Homann, H., Lamb, D., Lanotte, A. S., Leveque, E., Luthi, B., Mann, J., Mordant, N., Muller, W. C., Ott, S., Ouellette, N. T., Pinton, J. F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H. & Yeung, P. K. 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100 (25), 254504–5.Google Scholar
Auton, T., Hunt, J. & Prud'homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.Google Scholar
Ayyalasomayajula, S., Warhaft, Z. & Collins, L. R. 2008 Modeling inertial particle acceleration statistics in isotropic turbulence. Phys. Fluids 50, 095104.Google Scholar
Brown, R., Warhaft, Z. & Voth, G. 2009 Acceleration statistics of neutrally buoyant spherical particles in intense turbulence. Phys. Rev. Lett. 103, 194501.Google Scholar
Calzavarini, E., Volk, R., Lévêque, E., Bourgoin, B., Toschi, F. & Pinton, J.-F. 2009 Acceleration statistics of finite-size particles in turbulent flow: the role of Faxén corrections. J. Fluid Mech. 630, 179189.Google Scholar
Chevillard, L., Castaing, B., Lévêque, E. & Arneodo, A. 2006 Unified multifractal description of velocity increments statistics in turbulence: intermittency and skewness. Physica D 218, 7782.Google Scholar
Gasteuil, Y. 2009 Instrumentation Lagrangienne en turbulence: mise en oeuvre et analyse. PhD thesis, Ecole Normale Supérieure de Lyon.Google Scholar
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.Google Scholar
La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 10171019.Google Scholar
Loth, E. & Dorgan, A. 2009 An equation of motion for particles of finite Reynolds number and size. Environ. Fluid Mech. 9, 187206.Google Scholar
Lovalenti, P. & Brady, J. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.Google Scholar
Marié, L. & Daviaud, F. 2004 Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow. Phys. Fluids 16, 457461.Google Scholar
Mei, R. 1996 Velocity fidelity of flow tracer particles. Exp. Fluids 22, 113.Google Scholar
Monchaux, R., Ravelet, F., Dubrulle, B. & Daviaud, F. 2006 Properties of steady states in turbulent axisymmetric flows. Phys. Rev. Lett. 96, 124502.Google Scholar
Mordant, N., Crawford, A. & Bodenschatz, E. 2004 a Experimental Lagrangian acceleration probability density function measurement. Physica D 193, 245251.CrossRefGoogle Scholar
Mordant, N., Lévêque, E. & Pinton, J. F. 2004 b Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 116.Google Scholar
Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87 (21), 214501.Google Scholar
Mordant, N., Michel, O. & Pinton, J.-F. 2002 Time-resolved tracking of a sound scatterer in a complex flow: non-stationary signal analysis and applications. J. Acoust. Soc. Am. 112, 108119.Google Scholar
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207223.Google Scholar
Pearson, B. & Antonia, R. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343382.Google Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.Google Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2008 Turbulent transport of material particles: an experimental study of density effects. Eur. Phys. J. B 66, 531536.Google Scholar
Ravelet, F., Chiffaudel, A. & Daviaud, F. 2008 Supercritical transition to turbulence in an inertially driven von Kármán closed flow. J. Fluid Mech. 601, 339364.Google Scholar
de la Torre, A. & Burguete, J. 2007 Slow dynamics in a turbulent von Kármán swirling flow. Phys. Rev. Lett. 99, 054101.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.Google Scholar
Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J. F. & Toschi, F. 2008 a Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237 (14–17), 20842089.Google Scholar
Volk, R., Mordant, N., Verhille, G. & Pinton, J. F. 2008 b Laser Doppler measurement of inertial particle and bubble accelerations in turbulence. Europhys. Lett. 81 (3), 34002.Google Scholar
Volk, R., Odier, P. & Pinton, J.-F. 2006 Fluctuation of magnetic induction in von Kármán swirling flows. Phys. Fluids 18, 085105.Google Scholar
Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142.Google Scholar
Zimmermann, R., Xu, H., Gasteuil, Y., Bourgoin, M., Volk, R., Pinton, J.-F. & Bodenschatz, E. 2010 The Lagrangian exploration module: an apparatus for the study of statistically homogeneous and isotropic turbulence. Rev. Sci. Instrum. 81 (5), 055112.Google Scholar
Zocchi, G., Tabeling, P., Maurer, J. & Willaime, H. 1994 Measurement of the scaling of dissipation at high Reynolds numbers. Phys. Rev. E 50 (5), 36933700.Google Scholar