Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T14:58:56.623Z Has data issue: false hasContentIssue false

Entrainment of particles during the withdrawal of a fibre from a dilute suspension

Published online by Cambridge University Press:  30 September 2020

B. M. Dincau
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
E. Mai
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
Q. Magdelaine
Affiliation:
Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, F-93303 Aubervilliers, France Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, F-75005Paris, France
J. A. Lee
Affiliation:
Saint-Gobain Research North America, Northborough, MA 01532, USA
M. Z. Bazant
Affiliation:
Saint-Gobain Research North America, Northborough, MA 01532, USA Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA Department of Mathematics, MIT, Cambridge, MA 02139, USA
A. Sauret*
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
*
Email address for correspondence: asauret@ucsb.edu

Abstract

A fibre withdrawn from a bath of a dilute particulate suspension exhibits different coating regimes depending on the physical properties of the fluid, the withdrawal speed, the particle sizes and the radius of the fibre. Our experiments indicate that only the liquid without particles is entrained for thin coating films. Beyond a threshold capillary number, the fibre is coated by a liquid film with entrained particles. We systematically characterize the role of the capillary number, the particle size and the fibre radius on the threshold speed for particle entrainment. We discuss the boundary between these two regimes and show that the thickness of the liquid film at the stagnation point controls the entrainment process. The radius of the fibre provides a new degree of control in capillary filtering, allowing greater control over the size of the particles entrained in the film.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonnoit, C., Bertrand, T., Clément, E. & Lindner, A. 2012 Accelerated drop detachment in granular suspensions. Phys. Fluids 24, 043304.CrossRefGoogle Scholar
Boyer, F., Guazzelli, E. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.CrossRefGoogle ScholarPubMed
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166188.CrossRefGoogle Scholar
Château, J., Guazzelli, É. & Lhuissier, H. 2018 Pinch-off of a viscous suspension thread. J. Fluid Mech. 852, 178198.CrossRefGoogle Scholar
Château, J. & Lhuissier, H. 2019 Breakup of a particulate suspension jet. Phys. Rev. Fluids 4 (1), 012001.CrossRefGoogle Scholar
Colosqui, C. E., Morris, J. F. & Stone, H. A. 2013 Hydrodynamically driven colloidal assembly in dip coating. Phys. Rev. Lett. 110 (18), 188302.CrossRefGoogle ScholarPubMed
Derjaguin, B. & Titievskaya, A. 1945 Experimental study of liquid film thickness left on a solid wall after receeding meniscus. Dokl. Akad. Nauk USSR 50, 307310.Google Scholar
Dincau, B. M., Bazant, M. Z., Dressaire, E. & Sauret, A. 2019 Capillary sorting of particles by dip coating. Phys. Rev. Appl. 12 (1), 011001.CrossRefGoogle Scholar
Dressaire, E. & Sauret, A. 2017 Clogging of microfluidic systems. Soft Matt. 13 (1), 3748.CrossRefGoogle Scholar
Furbank, R. J. & Morris, J. F. 2004 An experimental study of particle effects on drop formation. Phys. Fluids 16 (5), 17771790.CrossRefGoogle Scholar
Gans, A., Dressaire, E., Colnet, B., Saingier, G., Bazant, M. Z. & Sauret, A. 2019 Dip-coating of suspensions. Soft Matt. 15 (2), 252261.CrossRefGoogle ScholarPubMed
Ghosh, M., Fan, F. & Stebe, K. J. 2007 Spontaneous pattern formation by dip coating of colloidal suspensions on homogeneous surfaces. Langmuir 23 (4), 21802183.CrossRefGoogle ScholarPubMed
Goucher, F. S. & Ward, H. 1922 A problem in viscosity. Phil. Mag. 44 (6), 1002.Google Scholar
Gu, X., Trusty, P. A., Butler, E. G. & Ponton, C. B. 2000 Deposition of zirconia sols on woven fibre preforms using a dip-coating technique. J. Eur. Ceram. Soc. 20 (6), 675684.CrossRefGoogle Scholar
Guazzelli, E. & Morris, J. F. 2011 A Physical Introduction to Suspension Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Guazzelli, É. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Hameed, M. & Morris, J. F. 2009 Breakup of a liquid jet containing solid particles: a singularity approach. SIAM. J. Appl. Maths 70 (3), 885900.CrossRefGoogle Scholar
Hoath, S. D., Hsiao, W.-K., Hutchings, I. M. & Tuladhar, T. R. 2014 Jetted mixtures of particle suspensions and resins. Phys. Fluids 26 (10), 101701.CrossRefGoogle Scholar
Jost, K., Perez, C. R., McDonough, J. K., Presser, V., Heon, M., Dion, G. & Gogotsi, Y. 2011 Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4 (12), 50605067.CrossRefGoogle Scholar
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 4254.Google Scholar
Lindner, A., Fiscina, J. E. & Wagner, C. 2015 Single particles accelerate final stages of capillary break-up. Europhys. Lett. 110 (6), 64002.CrossRefGoogle Scholar
Maleki, M., Reyssat, M., Restagno, F., Quéré, D. & Clanet, C. 2011 Landau–Levich menisci. J. Colloid Interface Sci. 354 (1), 359363.CrossRefGoogle ScholarPubMed
McIlroy, C. & Harlen, O. G. 2014 Modelling capillary break-up of particulate suspensions. Phys. Fluids 26 (3), 033101.CrossRefGoogle Scholar
Palma, S. & Lhuissier, H. 2019 Dip-coating with a particulate suspension. J. Fluid Mech. 869, R3.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 4975.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31 (1), 347384.CrossRefGoogle Scholar
Raux, P. S., Troger, A., Jop, P. & Sauret, A. 2020 Spreading and fragmentation of particle-laden liquid sheets. Phys. Rev. Fluids 5 (4), 044004.CrossRefGoogle Scholar
Rio, E. & Boulogne, F. 2017 Withdrawing a solid from a bath: How much liquid is coated? Adv. Colloid Interface Sci. 247, 100114.CrossRefGoogle ScholarPubMed
Sauret, A., Barney, E. C., Perro, A., Villermaux, E., Stone, H. A. & Dressaire, E. 2014 Clogging by sieving in microchannels: application to the detection of contaminants in colloidal suspensions. Appl. Phys. Lett. 105 (7), 074101.CrossRefGoogle Scholar
Sauret, A., Gans, A., Colnet, B., Saingier, G., Bazant, M. Z. & Dressaire, E. 2019 Capillary filtering of particles during dip coating. Phys. Rev. Fluids 4 (5), 054303.CrossRefGoogle Scholar
Sauret, A., Somszor, K., Villermaux, E. & Dressaire, E. 2018 Growth of clogs in parallel microchannels. Phys. Rev. Fluids 3 (10), 104301.CrossRefGoogle Scholar
Scriven, L. E. 1988 Physics and applications of dip coating and spin coating. Mater. Res. Soc. 121, 717.CrossRefGoogle Scholar
Shen, A. Q., Gleason, B., McKinley, G. H. & Stone, H. A. 2002 Fiber coating with surfactant solutions. Phys. Fluids 14 (11), 40554068.CrossRefGoogle Scholar
Tao, G., Abouraddy, A. F., Stolyarov, A. M. & Fink, Y. 2015 Multimaterial fibers. In Lab-on-Fiber Technology, pp. 126. Springer.Google Scholar
Wang, W. & Ku, Y. 2003 The light transmission and distribution in an optical fiber coated with $\textrm {TiO}_{2}$ particles. Chemosphere 50 (8), 9991006.CrossRefGoogle Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
White, D. A. & Tallmadge, J. A. 1966 A theory of withdrawal of cylinders from liquid baths. AIChE J. 12 (2), 333339.CrossRefGoogle Scholar
Wu, X., Wyman, I., Zhang, G., Lin, J., Liu, Z., Wang, Y. & Hu, H. 2016 Preparation of superamphiphobic polymer-based coatings via spray-and dip-coating strategies. Prog. Organic Coatings 90, 463471.CrossRefGoogle Scholar
Zhao, M., Oléron, M., Pelosse, A., Limat, L., Guazzelli, E. & Roché, M. 2020 Spreading of granular suspensions on a solid surface. Phys. Rev. Res. 2 (2), 022031.CrossRefGoogle Scholar