Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-08-02T06:05:38.119Z Has data issue: false hasContentIssue false

Exploration of shock–droplet interaction based on high-fidelity simulation and improved theoretical model

Published online by Cambridge University Press:  30 July 2024

Tianheng Xiong
Affiliation:
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518000, PR China
Changxiao Shao*
Affiliation:
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518000, PR China
Kun Luo
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
*
Email address for correspondence: shaochangxiao@hit.edu.cn

Abstract

Shock–droplet interaction in the early stage involves intricate wave structures. Investigating this phenomenon is inherently challenging due to the fine spatial and temporal scales involved. Past research has suggested that the occurrence of cavitation, marked by a negative peak pressure, is linked to the focus of the reflected expansion wave. In this study, a high-fidelity compressible numerical approach is utilized to replicate the initial phase of shock–droplet interactions. The location of the negative peak pressure is meticulously documented and compared with experimental measurement and numerical results. Results indicate a strong alignment between the negative peak pressure positions identified through numerical simulations and the focal points identified in theoretical models for low gas–liquid wave velocity ratios. However, this alignment is notably disrupted when dealing with higher gas–liquid wave velocity ratios. Further enhancements are made to the theoretical model, enabling a more precise depiction of internal wave structures and focus points, particularly under conditions of high gas–liquid wave velocity ratios. The study delves into the various factors influencing internal pressure fluctuations within the liquid droplet, categorizing them into four phases: the shock wave effect, relaxation effect, fluctuation effect, and expansion wave effect. Analysing the pressure decrease portion reveals that while the converging of the reflected expansion wave leads to a substantial pressure drop, it accounts for only a fraction of the total pressure variation. Consequently, any model predicting negative peak pressure positions must comprehensively consider all contributing factors.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalburg, C., Van Leer, B. & Faeth, G.M. 2003 Deformation and drag properties of round drops subjected to shock-wave disturbances. AIAA J. 41 (12), 23712378.CrossRefGoogle Scholar
Allaire, G., Clerc, S. & Kokh, S. 2002 A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2), 577616.CrossRefGoogle Scholar
Ando, K. 2010 Effects of polydispersity in bubbly flows. PhD thesis, California Institute of Technology.Google Scholar
Azouzi, M.E.M., Ramboz, C., Lenain, J.F. & Caupin, F. 2013 A coherent picture of water at extreme negative pressure. Nat. Phys. 9 (1), 3841.CrossRefGoogle Scholar
Bhattacharya, S. 2016 Interfacial wave dynamics of a drop with an embedded bubble. Phys. Rev. E 93 (2), 023119.CrossRefGoogle ScholarPubMed
Biasiori-Poulanges, L. & El-Rabii, H. 2021 Shock-induced cavitation and wavefront analysis inside a water droplet. Phys. Fluids 33 (9), 097104.CrossRefGoogle Scholar
Biasiori-Poulanges, L. & Schmidmayer, K. 2023 A phenomenological analysis of droplet shock-induced cavitation using a multiphase modeling approach. Phys. Fluids 35 (1), 013312.CrossRefGoogle Scholar
Boyd, B. & Jarrahbashi, D. 2021 Numerical study of the transcritical shock–droplet interaction. Phys. Rev. Fluids 6 (11), 113601.CrossRefGoogle Scholar
Brujan, E.A., Keen, G.S., Vogel, A. & Blake, J.R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.CrossRefGoogle Scholar
Bryngelson, S.H., Schmidmayer, K., Coralic, V., Meng, J.C., Maeda, K. & Colonius, T. 2021 MFC: an open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver. Comput. Phys. Commun. 266, 107396.CrossRefGoogle ScholarPubMed
Caupin, F. 2005 Liquid–vapor interface, cavitation, and the phase diagram of water. Phys. Rev. E 71 (5), 051605.CrossRefGoogle ScholarPubMed
Caupin, F. & Herbert, E. 2006 Cavitation in water: a review. C. R. Phys. 7 (9–10), 10001017.CrossRefGoogle Scholar
Cervenỳ, V. 2001 Seismic Ray Theory. Cambridge University Press.CrossRefGoogle Scholar
Cocchi, J.P., Saurel, R. & Loraud, J.C. 1996 Treatment of interface problems with Godunov-type schemes. Shock Waves 5, 347357.CrossRefGoogle Scholar
Colonius, V. & Coralic, T. 2014 Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95121.Google Scholar
Coralic, V. 2015 Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy. PhD thesis, California Institute of Technology.Google Scholar
Debenedetti, P.G. 1996 Metastable Liquids: Concepts and Principles. Princeton University Press.CrossRefGoogle Scholar
Dorschner, B., Biasiori-Poulanges, L., Schmidmayer, K., El-Rabii, H. & Colonius, T. 2020 On the formation and recurrent shedding of ligaments in droplet aerobreakup. J. Fluid Mech. 904, A20.CrossRefGoogle Scholar
Engel, O.G. 1958 Fragmentation of waterdrops in the zone behind an air shock. J. Res. Natl Bur. Stand. 60 (3), 245280.CrossRefGoogle Scholar
Field, J.E., Camus, J.J., Tinguely, M., Obreschkow, D. & Farhat, M. 2012 Cavitation in impacted drops and jets and the effect on erosion damage thresholds. Wear 290, 154160.CrossRefGoogle Scholar
Field, J.E., Dear, J.P. & Ogren, J.E. 1989 The effects of target compliance on liquid drop impact. J. Appl. Phys. 65 (2), 533540.CrossRefGoogle Scholar
Fleischmann, N., Adami, S. & Adams, N.A. 2020 A shock-stable modification of the HLLC Riemann solver with reduced numerical dissipation. J. Comput. Phys. 423, 109762.CrossRefGoogle Scholar
Geva, M., Ram, O. & Sadot, O. 2018 The regular reflection$\rightarrow$Mach reflection transition in unsteady flow over convex surfaces. J. Fluid Mech. 837, 4879.CrossRefGoogle Scholar
Gojani, A.B., Ohtani, K., Takayama, K. & Hosseini, S.H.R. 2016 Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin. Shock Waves 26, 6368.CrossRefGoogle Scholar
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46 (3), 371402.CrossRefGoogle Scholar
Haller, K.K., Poulikakos, D., Ventikos, Y. & Monkewitz, P. 2003 Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. J. Fluid Mech. 490, 114.CrossRefGoogle Scholar
Haller, K.K., Ventikos, Y., Poulikakos, D. & Monkewitz, P. 2002 Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92 (5), 28212828.CrossRefGoogle Scholar
Hanson, A.R., Domich, E.G. & Adams, H.S. 1963 Shock tube investigation of the breakup of drops by air blasts. Phys. Fluids 6 (8), 10701080.CrossRefGoogle Scholar
Hsiang, L.P. & Faeth, G.M. 1992 Near-limit drop deformation and secondary breakup. Intl J. Multiphase Flow 18 (5), 635652.CrossRefGoogle Scholar
Hsiang, L.P. & Faeth, G.M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiphase Flow 21 (4), 545560.CrossRefGoogle Scholar
Johnsen, E. 2008 Numerical simulations of non-spherical bubble collapse: with applications to shockwave lithotripsy. PhD thesis, California Institute of Technology.Google Scholar
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25 (6–7), 12631303.CrossRefGoogle Scholar
Kaiser, J.W.J., Winter, J.M., Adami, S. & Adams, N.A. 2020 Investigation of interface deformation dynamics during high-Weber number cylindrical droplet breakup. Intl J. Multiphase Flow 132, 103409.CrossRefGoogle Scholar
Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F. & Stewart, D.S. 2000 Two-phase modeling of DDT in granular materials: reduced equations. Tech. Rep. LA-UR-99-3329. Los Alamos National Laboratory.Google Scholar
Kékesi, T., Amberg, G. & Wittberg, L.P. 2014 Drop deformation and breakup. Intl J. Multiphase Flow 66, 110.CrossRefGoogle Scholar
Kodama, T. & Tomita, Y. 2000 Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics. Appl. Phys. B 70, 139149.CrossRefGoogle Scholar
Kyriazis, N., Koukouvinis, P. & Gavaises, M. 2018 Modelling cavitation during drop impact on solid surfaces. Adv. Colloid Interface Sci. 260, 4664.CrossRefGoogle ScholarPubMed
Lane, W.R. 1951 Shatter of drops in streams of air. Ind. Engng Chem. 43 (6), 13121317.CrossRefGoogle Scholar
Lee, C.H. & Reitz, R.D. 2000 An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream. Intl J. Multiphase Flow 26 (2), 229244.CrossRefGoogle Scholar
LeVeque, R.J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.CrossRefGoogle Scholar
Liang, Y., Jiang, Y.Z., Wen, C.Y. & Liu, Y. 2020 Interaction of a planar shock wave and a water droplet embedded with a vapour cavity. J. Fluid Mech. 885, R6.CrossRefGoogle Scholar
Liu, N., Wang, Z.G., Sun, M.B., Wang, H.B. & Wang, B. 2018 Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronaut. 145, 116130.CrossRefGoogle Scholar
Liu, Y. 2021 Investigation on the interaction of a shock and a liquid droplet with and without a vapor cavity inside. PhD thesis, Hong Kong Polytechnic University.Google Scholar
Liu, Z. & Reitz, R.D. 1997 An analysis of the distortion and breakup mechanisms of high speed liquid drops. Intl J. Multiphase Flow 23 (4), 631650.CrossRefGoogle Scholar
Marsh, S.P. 1980 LASL Shock Hugoniot Data. University of California Press.Google Scholar
Meng, J.C. 2016 Numerical simulations of droplet aerobreakup. PhD thesis, California Institute of Technology.Google Scholar
Meng, J.C. & Colonius, T. 2015 Numerical simulations of the early stages of high-speed droplet breakup. Shock Waves 25, 399414.CrossRefGoogle Scholar
Meng, J.C. & Colonius, T. 2018 Numerical simulation of the aerobreakup of a water droplet. J. Fluid Mech. 835, 11081135.CrossRefGoogle Scholar
Nagayama, K., Mori, Y., Motegi, Y. & Nakahara, M. 2006 Shock Hugoniot for biological materials. Shock Waves 15, 267275.CrossRefGoogle Scholar
Nicholls, J.A. & Ranger, A.A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285290.CrossRefGoogle Scholar
Obreschkow, D., Dorsaz, N., Kobel, P., de Bosset, A., Tinguely, M., Field, J. & Farhat, M. 2011 Confined shocks inside isolated liquid volumes: a new path of erosion? Phys. Fluids 23 (10), 101702.CrossRefGoogle Scholar
Obreschkow, D., Kobel, P., Dorsaz, N., De Bosset, A., Nicollier, C. & Farhat, M. 2006 Cavitation bubble dynamics inside liquid drops in microgravity. Phys. Rev. Lett. 97 (9), 094502.CrossRefGoogle ScholarPubMed
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13 (6), 741757.CrossRefGoogle Scholar
Schmidmayer, K. & Biasiori-Poulanges, L. 2023 Geometry effects on the droplet shock-induced cavitation. Phys. Fluids 35 (6), 063315.CrossRefGoogle Scholar
Schmidmayer, K., Bryngelson, S.H. & Colonius, T. 2020 An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. J. Comput. Phys. 402, 109080.CrossRefGoogle Scholar
Sembian, S., Liverts, M., Tillmark, N. & Apazidis, N. 2016 Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28 (5), 056102.CrossRefGoogle Scholar
Shpak, O., Verweij, M., de Jong, N. & Versluis, M. 2016 Droplets, bubbles and ultrasound interactions. In Therapeutic Ultrasound (ed. J.-M. Escoffre & A. Bouakaz), pp. 157174. Springer.CrossRefGoogle Scholar
Theofanous, T.G. 2011 Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661690.CrossRefGoogle Scholar
Theofanous, T.G. & Li, G.J. 2008 On the physics of aerobreakup. Phys. Fluids 20 (5), 052103.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V.V., Ng, C.L., Chang, C.H., Deng, X. & Sushchikh, S. 2012 The physics of aerobreakup. II. Viscous liquids. Phys. Fluids 24 (2), 022104.CrossRefGoogle Scholar
Thompson, K.W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68 (1), 124.CrossRefGoogle Scholar
Thompson, K.W. 1990 Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89 (2), 439461.CrossRefGoogle Scholar
Vijayashankar, V.S., Kutler, P. & Anderson, D. 1976 Diffraction of a shock wave by a compression corner; regular and single Mach reflection. NASA Tech. Rep. TM X-73178.Google Scholar
Wu, W.X., Xiang, G.M. & Wang, B. 2018 On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects. J. Fluid Mech. 857, 851877.CrossRefGoogle Scholar
Xiang, G.M. & Wang, B. 2017 Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity. J. Fluid Mech. 825, 825852.CrossRefGoogle Scholar
Xu, S., Fan, W.Q., Wu, W.X., Wang, W. & Wang, B. 2022 The early stage of the interaction between a planar shock and a cylindrical droplet considering cavitation effects: theoretical analysis and numerical simulation. arXiv:2205.00471Google Scholar
Xu, S., Fan, W.Q., Wu, W.X., Wen, H.C. & Wang, B. 2023 Analysis of wave converging phenomena inside the shocked two-dimensional cylindrical water column. J. Fluid Mech. 964, A12.CrossRefGoogle Scholar
Zhao, H., Liu, H.F., Li, W.F. & Xu, J.L. 2010 Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Phys. Fluids 22 (11), 114103.CrossRefGoogle Scholar