Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-25T12:59:58.088Z Has data issue: false hasContentIssue false

The flow downstream of screens and its influence on the flow in the stagnation region of cylindrical bodies

Published online by Cambridge University Press:  26 April 2006

J. Böttcher
Affiliation:
DFVLR, Institute for Experimental Fluid Mechanics, Göttingen, FRG
E. Wedemeyer
Affiliation:
DFVLR, Institute for Experimental Fluid Mechanics, Göttingen, FRG

Abstract

Screens used in settling chamber of wind tunnels are known to introduce non-uniformities into the flow which, in turn, may influence the flow in the working section. A thorough investigation was made, using a flow visualization technique, of the development of non-uniformities generated by screens and their influence on the flow in the stagnation region of circular cylinders placed normal to the flow. A theoretical model of the flow downstream of screens is presented that is consistent with the experimental findings.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, W. D. & Peterson, E. G., 1951 An investigation of flow through screens. Trans. ASME 73, 467480.Google Scholar
Batchelor, G. K. & Townsend, A. A., 1948 Decay of turbulence in the final period. Proc. R. Soc. Lond. A 194, 527543.Google Scholar
Bippes, H.: 1972 Experimentelle Untersuchung des laminar-turbulenten Umschlags an einer parallel angeströmten konkaven Wand. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse. Springer.
Birkhoff, G.: 1954 Fourier synthesis of homogeneous turbulence. Commun. Pure Appl. Maths 7, 1944.Google Scholar
von Bohl, J. G. E.: 1940 Das Verhalten paralleler Luftstrahlen. Ing. Arch. 11, 295314.Google Scholar
Böttcher, J.: 1987 Die Strömung im Nachlauf von Sieben und die Entstehung von Längswirbeln in der Staupunktströmung. DFVLR-FB 87–27.Google Scholar
Bradshaw, P.: 1965 The effect of wind-tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22, 679687.Google Scholar
de Bray, B. G.: 1967 Some investigations into the spanwise non-uniformity of nominally two-dimensional incompressible boundary layers downstream of gauze screens. Rep. and Mem. Areo. Res. Council no. 3578.Google Scholar
Colak-Antic, P.: 1971 Visuelle Untersuchungen von Längswirbeln im Staupunktgebiet eines Kreiszylinders bei turbulenter Anströmung. DLR Mitteilung 71–13, Göttingen, pp. 194220.Google Scholar
Corrsin, S.: 1944 Investigation of the behavior of parallel two-dimensional air jets. NACA ARC no. 4H24.Google Scholar
Corrsin, S.: 1963 Turbulence: experimental methods. In Handbuch der Physik (ed. S. Flügge), vol. 8/2. Springer.
Crow, S. C.: 1966 The spanwise perturbation of two-dimensional boundary layers. J. Fluid Mech. 24, 153164.Google Scholar
Furuya, Y. & Osaka, H., 1975 The spanwise non-uniformity of a nominally two-dimensional turbulent boundary layer. Bull. JSME 18, 664672.Google Scholar
Görtler, H.: 1955 Dreidimensionale Instabilität der ebenen Staupunkströmung gegenüber wirbelartigen Störungen. In 50 Jahre Granzschichtforschung, Vieweg, Braunschweig (ed. H. Görtler & W. Tollmien), pp. 304314.
Hainzl, J.: 1965 Zur Stabilitätstheorie der Staupunktströmung gegenüber wirbelstörungen vom Taylor-Görtler-Typ. DLR-FB 65–64.Google Scholar
Hämmerlin, G.: 1955 Zur Instabilitätstheorie der ebenen Staupunktströmung. In 50 Jahre Grenzschichtforshung, Vieweg, Braunschweig (ed. H. Görtler & W. Tollmien), pp. 315327.
Hodson, P. R. & Nagib, H. M., 1975 Longitudinal vortices induced in a stagnation region by wakes - their incipient formation and effects on heat transfer from cylinders. NASA CR-152850.Google Scholar
Kestin, J. & Wood, R. T., 1970 On the stability of two-dimensional stagnation flow. J. Fluid Mech. 44, 461479.Google Scholar
Laws, E. M. & Livesey, J. L., 1978 Flow through screens. Ann. Rev. Fluid Mech. 10, 247266.Google Scholar
Loitsiansky, L. G.: 1939 Some basic laws of isotropic turbulent flow. Rep. Cent. Aero Hydrodyn. Inst. (Moscow), no. 440. (Translated as Tech. Mem. Natl Adv. Comm. Aero. Wash. no. 1079).Google Scholar
Mehta, R. D.: 1985 Turbulent boundary layer perturbed by a screen. AIAA J. 23, 13351342.Google Scholar
Morgan, P. G.: 1960 The stability of flow through porous screens. J. Aero. Soc. 64, 359362.Google Scholar
Morkovin, M. V.: 1979 On the question of instabilities upstream of cylindrical bodies. NASA Rep. 3231.Google Scholar
Rotta, J. C.: 1979 Turbulente Strömungen. B. G. Teubner, Stuttgart.
Sadeh, W. Z., Sutera, S. P. & Maeder, P. F., 1970a Analysis of vorticity amplification in the flow approaching a two-dimensional stagnation point. Z. angew. Math. Phys. 21, 699716.Google Scholar
Sadeh, W. Z., Sutera, S. P. & Maeder, P. F., 1970b An investigation of vorticity amplification in stagnation flow. Z. angew. Math. Phys. 21, 717742.Google Scholar
Staffman, P. G.: 1967 The large scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581593.Google Scholar
Sutera, S. P.: 1965 Vorticity amplification in stagnation-point flow and its effect on heat transfer. J. Fluid Mech. 21, 513534.Google Scholar
Sutera, S. P., Maeder, P. F. & Kestin, J., 1963 On the sensitivity of heat transfer in stagnationpoint boundary layer to free-stream vorticity. J. Fluid Mech. 16, 497520.Google Scholar
Wilson, S. D. R. & Gladwell, I. 1978 The stability of a two-dimensional stagnation flow to three-dimensional disturbances. J. Fluid Mech. 84, 517527.Google Scholar