Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T05:53:27.796Z Has data issue: false hasContentIssue false

Four-dimensional variational data assimilation of a turbulent jet for super-temporal-resolution reconstruction

Published online by Cambridge University Press:  05 January 2024

Chuangxin He
Affiliation:
Key Laboratory of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
Xin Zeng
Affiliation:
Key Laboratory of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
Peng Wang
Affiliation:
Key Laboratory of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
Xin Wen
Affiliation:
Key Laboratory of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
Yingzheng Liu*
Affiliation:
Key Laboratory of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
*
Email address for correspondence: yzliu@sjtu.edu.cn

Abstract

The super-temporal-resolution (STR) reconstruction of turbulent flows is an important data augmentation application for increasing the data reach in measurement techniques and understanding turbulence dynamics. This paper proposes a data assimilation (DA) strategy based on weak-constraint four-dimensional variation to conduct an STR reconstruction in a turbulent jet beyond the Nyquist limit from given low-sampling-rate observations. Highly resolved large-eddy simulation (LES) data are used to produce synthetic measurements, which are used as observations and for validation. A segregated assimilation procedure is realised to assimilate the initial condition, inflow boundary condition and model error separately. Different types of observational data are tested. The first type is down-sampled LES data containing many small-scale turbulence structures with or without synthetic noise. The DA results show that the temporal variation of the small-scale structures is well recovered even with noise in the observations. The spectra are resolved to a frequency approximately one order of magnitude higher than what can be captured within the Nyquist limit. The second type of observation is low-sampling-rate tomographic particle image velocimetry (tomo-PIV) data with or without the injection of small-scale structures. The modulation between the large-scale structures contained in the tomo-PIV fields and the small scales injected from the observations is improved. The resultant small scales in the STR reconstruction have the characteristics of authentic turbulence to a considerable extent. Additionally, DA yields much smaller errors in the prediction of particle positions when compared with the Wiener filter, demonstrating the great potential for Lagrangian particle tracking in measurement techniques.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.CrossRefGoogle Scholar
Artana, G., Cammilleri, A., Carlier, J. & Mémin, E. 2012 Strong and weak constraint variational assimilations for reduced order fluid flow modeling. J. Comput. Phys. 231, 32643288.CrossRefGoogle Scholar
Ashurst, W.T., Kerstein, A.R., Kerr, R.M. & Gibson, C.H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 2343.CrossRefGoogle Scholar
Bao, W., Lai, W.S., Zhang, X., Gao, Z. & Yang, M.H. 2021 MEMC-Net: motion estimation and motion compensation driven neural network for video interpolation and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 43, 993–948.CrossRefGoogle ScholarPubMed
Bennett, A.F. 2002 Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press.CrossRefGoogle Scholar
Brenner, M.P., Eldredge, J.D. & Freund, J.B. 2019 Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4, 100501.CrossRefGoogle Scholar
Brunton, S., Noack, B.R. & Koumoutsakos, P. 2019 Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477508.CrossRefGoogle Scholar
Buxton, O. & Ganapathisubramani, B. 2010 Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech. 651, 483502.CrossRefGoogle Scholar
Chandramouli, P., Memin, E. & Heitz, D. 2020 4D large scale variational data assimilation of a turbulent flow with a dynamics error model. J. Comput. Phys. 412, 109446.CrossRefGoogle Scholar
Chi, Z., Nasiri, R.M., Liu, Z., Lu, J. & Plataniotis, K.N. 2020 All at once: temporally adaptive multi-frame interpolation with advanced motion modeling. In Computer Vision – ECCV 2020(ed. A. Vedaldi, H. Bischof, T. Brox & J.M. Frahm), Lecture Notes in Computer Science, pp. 107–123. Springer.CrossRefGoogle Scholar
Deng, Z., Chen, Y., Liu, Y. & Kim, K.C. 2019 Time-resolved turbulent velocity field reconstruction using a long short-term memory (LSTM)-based artificial intelligence framework. Phys. Fluids 31, 075108.CrossRefGoogle Scholar
Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 123.CrossRefGoogle Scholar
Durgesh, V. & Naughton, J.W. 2010 Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near wake flow. Exp. Fluids 49, 571583.CrossRefGoogle Scholar
Evensen, G., Vossepoel, F.C. & Leeuwen, P.J. 2022 Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem. Springer.CrossRefGoogle Scholar
Ferziger, J.H., Peric, M. & Street, R.L. 2020 Computational Methods for Fluid Dynamics, 4th edn. Springer.CrossRefGoogle Scholar
Fiscaletti, D., Attili, A., Bisetti, F. & Elsinga, G.E. 2016 Scale interactions in a mixing layer - the role of the large-scale gradients. J. Fluid Mech. 791, 154173.CrossRefGoogle Scholar
Fiscaletti, D., Ganapathisubramani, B. & Elsinga, G.E. 2015 Amplitude and frequency modulation of the small scales in a jet. J. Fluid Mech. 772, 756783.CrossRefGoogle Scholar
Fiscaletti, D., Ragni, D., Overmars, E.F.J., Westerweel, J. & Elsinga, G.E. 2022 Tomographic long-distance μPIV to investigate the small scales of turbulence in a jet at high Reynolds number. Exp. Fluids 63, 9.CrossRefGoogle Scholar
Foures, D.P.G., Dovetta, N., Sipp, D. & Schmid, P.J. 2014 A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction. J. Fluid Mech. 759, 404431.CrossRefGoogle Scholar
Fukami, K., Fukagata, K. & Taira, K. 2019 Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 870, 106120.CrossRefGoogle Scholar
Fukami, K., Fukagata, K. & Taira, K. 2021 Machine learning based spatio-temporal super resolution reconstruction of turbulent flows. J. Fluid Mech. 909, A9.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Monty, J.P., Chung, D. & Marusic, I. 2012 Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 6191.CrossRefGoogle Scholar
Gesemann, S., Huhn, F., Schanz, D. & Schroder, A. 2016 From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.Google Scholar
Giannopoulos, A. & Aider, J.L. 2020 Prediction of the dynamics of a backward-facing step flow using focused time-delay neural networks and particle image velocimetry data-sets. Intl J. Heat Fluid Flow 82, 108533.CrossRefGoogle Scholar
Gillissen, J., Bouffanais, R. & Yue, D. 2019 Data assimilation method to de-noise and de-filter particle image velocimetry data. J. Fluid Mech. 877, 196213.CrossRefGoogle Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. 2014 Evolution of the velocity-gradient tensor in a spatially developing turbulent flow. J. Fluid Mech. 756, 252292.CrossRefGoogle Scholar
Gronskis, A., Heitz, D. & Mémin, E. 2013 Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation. J. Comput. Phys. 242, 480497.CrossRefGoogle Scholar
Guemes, A., Discetti, S. & Ianiro, A. 2019 Sensing the turbulent large-scale motions with their wall signature. Phys. Fluids 31, 125112.CrossRefGoogle Scholar
He, C., Liu, Y. & Gan, L. 2018 a A data assimilation model for turbulent flows using continuous adjoint formulation. Phys. Fluids 30, 105108.CrossRefGoogle Scholar
He, C., Liu, Y. & Gan, L. 2020 Instantaneous pressure determination from unsteady velocity fields using adjoint-based sequential data assimilation. Phys. Fluids 32, 035101.CrossRefGoogle Scholar
He, C., Liu, Y. & Yavuzkurt, S. 2018 b Large-eddy simulation of circular jet mixing: lip- and inner-ribbed nozzles. Comput. Fluids 168, 245264.CrossRefGoogle Scholar
He, C., Wang, P. & Liu, Y. 2021 Data assimilation for turbulent mean flow and scalar fields with anisotropic formulation. Exp. Fluids 62, 117.CrossRefGoogle Scholar
He, C., Wang, P., Liu, Y. & Gan, L. 2022 Flow enhancement of tomographic particle image velocimetry measurements using sequential data assimilation. Phys. Fluids 34, 035101.CrossRefGoogle Scholar
Hosseini, Z., Martinuzzi, R.J. & Noack, B.R. 2015 Sensor-based estimation of the velocity in the wake of a low-aspect-ratio pyramid. Exp. Fluids 56, 13.CrossRefGoogle Scholar
Hudy, L.M., Naguib, A. & Humphreys, W.M. 2007 Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys. Fluids 19, 024103.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Zaman, K.B.M.Q. 2006 The ‘preferred mode’ of the axisymmetric jet. J. Fluid Mech. 110, 3971.CrossRefGoogle Scholar
Jin, X., Laima, S., Chen, W.L. & Li, H. 2020 Time-resolved reconstruction of flow field around a circular cylinder by recurrent neural networks based on non-time-resolved particle image velocimetry measurements. Exp. Fluids 61, 114.CrossRefGoogle Scholar
Kerherve, F., Roux, S. & Mathis, C.R. 2017 Combining time-resolved multi-point and spatially-resolved measurements for the recovering of very-large-scale motions in high Reynolds number turbulent boundary layer. Exp. Therm. Fluid Sci. 82, 102115.CrossRefGoogle Scholar
Khashehchi, M., Elsinga, G.E., Ooi, A., Soria, J. & Marusic, I. 2010 Studying invariants of the velocity gradient tensor of a round turbulent jet across the turbulent/nonturbulent interface using Tomo-PIV. In 15th Intl Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.Google Scholar
Khojasteh, A.R., Yang, Y., Heitz, D. & Laizet, S. 2021 Lagrangian coherent track initialisation (LCTI). Phys. Fluids 33, 095113.CrossRefGoogle Scholar
Kim, H., Kim, J., Won, S. & Lee, C. 2021 Unsupervised deep learning for super-resolution reconstruction of turbulence. J. Fluid Mech. 910, A29.CrossRefGoogle Scholar
Kim, J. & Lee, C. 2020 Prediction of turbulent heat transfer using convolutional neural networks. J. Fluid Mech. 882, A18.CrossRefGoogle Scholar
Lawson, J.M. & Dawson, J.R. 2014 A scanning PIV method for fine-scale turbulence measurements. Exp. Fluids 55, 1857.CrossRefGoogle Scholar
Lee, S. & You, D. 2019 Data-driven prediction of unsteady flow over a circular cylinder using deep learning. J. Fluid Mech. 879, 217254.CrossRefGoogle Scholar
Lemke, M. 2015 Adjoint Based Data Assimilation in Compressible Flows with Application to Pressure Determination from PIV Data. Technischen Universität Berlin.Google Scholar
Li, Y., Zhang, J., Dong, G. & Abdullah, N.S. 2019 Small scale reconstruction in three-dimensional Kolmogorov flows using four-dimensional variational data assimilation. J. Fluid Mech. 885, A9.CrossRefGoogle Scholar
Liu, B., Tang, J., Huang, H. & Lu, X.Y. 2020 Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids 32, 025105.CrossRefGoogle Scholar
Lumley, J.L. 2012 Stochastic Tools in Turbulence. Academic Press.Google Scholar
Manovski, P., Novara, M., Mohan, N., Geisler, R. & Schrder, A. 2021 3D Lagrangian particle tracking of a subsonic jet using multi-pulse shake-the-box. Exp. Therm. Fluid Sci. 123, 110346.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Mons, V. & Marquet, O. 2021 Linear and nonlinear sensor placement strategies for mean-flow reconstruction via data assimilation. J. Fluid Mech. 923, A1.CrossRefGoogle Scholar
Naka, Y., Tomita, K., Shimura, M., Fukushima, N., Tanahashi, M. & Miyauchi, T. 2016 Quad-plane stereoscopic PIV for fine-scale structure measurements in turbulence. Exp. Fluids 57, 63.CrossRefGoogle Scholar
Niklaus, S., Mai, L. & Liu, F. 2017 Video frame interpolation via adaptive convolution. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA.CrossRefGoogle Scholar
Nóvoa, A. & Magri, L. 2022 Real-time thermoacoustic data assimilation. J. Fluid Mech. 948, A35.CrossRefGoogle Scholar
Othmer, C. 2008 A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Intl J. Numer. Meth. Fluids 58, 861877.CrossRefGoogle Scholar
Panchapakesan, N.R. & Lumley, J.L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 1. air jet. J. Fluid Mech. 246, 197223.CrossRefGoogle Scholar
Papoutsis-Kiachagias, E.M. & Giannakoglou, K.C. 2016 Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: industrial applications. Arch. Comput. Meth. Engng 23, 255299.CrossRefGoogle Scholar
Park, J. & Choi, H. 2020 Machine-learning-based feedback control for drag reduction in a turbulent channel flow. J. Fluid Mech. 904, A24.CrossRefGoogle Scholar
Pino, F., Schena, L., Rabault, J. & Mendez, M.A. 2023 Comparative analysis of machine learning methods for active flow control. J. Fluid Mech. 958, A39.CrossRefGoogle Scholar
Podvin, B., Nguimatsia, S., Foucaut, J.-M., Cuvier, C. & Fraigneau, Y. 2018 On combining linear stochastic estimation and proper orthogonal decomposition for flow reconstruction. Exp. Fluids 59, 58.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rishita, D. & Girimaji, S.S. 2022 The effect of large-scale forcing on small-scale dynamics of incompressible turbulence. J. Fluid Mech. 941, A34.Google Scholar
Schanz, D., Gesemann, S. & Schrder, A. 2016 shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57, 70.CrossRefGoogle Scholar
Schneiders, J.F.G. & Scarano, F. 2016 Dense velocity reconstruction from tomographic PTV with material derivatives. Exp. Fluids 57, 139.CrossRefGoogle Scholar
Sirignano, J. & Macart, J.F. 2023 Deep learning closure models for large-eddy simulation of flows around bluff bodies. J. Fluid Mech. 966, A26.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q. Appl. Maths 45, 561571.CrossRefGoogle Scholar
Stefanescu, R., Sandu, A. & Navon, I.M. 2015 POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation. J. Comput. Phys. 295, 569595.CrossRefGoogle Scholar
Tan, S., Salibindla, A., Masuk, A.U.M. & Ni, R. 2019 An open-source shake-the-box method and its performance evaluation. In 13th International Symposium on Particle Image Velocimetry, Munich, Germany.Google Scholar
Tan, S., Salibindla, A., Masuk, A.U.M. & Ni, R. 2020 Introducing OpenLPT: new method of removing ghost particles and high–concentration particle shadow tracking. Exp. Fluids 61, 47.CrossRefGoogle Scholar
Tinney, C.E., Ukeiley, L.S. & Glauser, M.N. 2008 Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction. J. Fluid Mech. 615, 5392.CrossRefGoogle Scholar
Tremolet, Y. 2007 Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc. 133, 12671280.CrossRefGoogle Scholar
Tu, J.H., Griffin, J., Hart, A., Rowley, C.W., Cattafesta, L.N. & Ukeiley, L.S. 2013 Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp. Fluids 54, 1429.CrossRefGoogle Scholar
Vidard, P.A., Blayo, E., Dimet, F. & Piacentini, A. 2000 4D variational data analysis with imperfect model. Flow Turbul. Combust. 65, 489504.CrossRefGoogle Scholar
Vieillefosse, P. 1984 Internal motion of a small element of fluid in an inviscid flow. Physica A: Stat. Mech. Applics. 125, 150162.CrossRefGoogle Scholar
Wang, G. & Pan, Y. 2021 Phase-resolved ocean wave forecast with ensemble-based data assimilation. J. Fluid Mech. 918, A19.CrossRefGoogle Scholar
Wang, Q., Wang, M. & Zaki, T.A. 2022 What is observable from wall data in turbulent channel flow? J. Fluid Mech. 941, A48.CrossRefGoogle Scholar
Waterson, N.P. & Deconinck, H. 2007 Design principles for bounded higher-order convection schemes – a unified approach. J. Comput. Phys. 224, 182207.CrossRefGoogle Scholar
Welch, P.D. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU-15, 7073.CrossRefGoogle Scholar
Wiener, N. 1949 Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT Press.CrossRefGoogle Scholar
Zauner, M., Mons, V., Marquet, O. & Leclaire, B. 2022 Nudging-based data assimilation of the turbulent flow around a square cylinder. J. Fluid Mech. 937, A38.CrossRefGoogle Scholar
Zeng, X., He, C. & Liu, Y. 2022 GPU–accelerated MART and concurrent cross–correlation for tomographic PIV. Exp. Fluids 63, 91.CrossRefGoogle Scholar