Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-28T02:16:21.988Z Has data issue: false hasContentIssue false

High-speed shear-driven dynamos. Part 1. Asymptotic analysis

Published online by Cambridge University Press:  10 April 2019

Kengo Deguchi*
Affiliation:
School of Mathematical Sciences, Monash University, VIC 3800, Australia
*
Email address for correspondence: kengo.deguchi@monash.edu

Abstract

Rational large Reynolds number matched asymptotic expansions of three-dimensional nonlinear magneto-hydrodynamic (MHD) states are the concern of this contribution. The nonlinear MHD states, assumed to be predominantly driven by a unidirectional shear, can be sustained without any linear instability of the base flow and hence are responsible for subcritical transition to turbulence. Two classes of nonlinear MHD states are found. The first class of nonlinear states emerged out of a nice combination of the purely hydrodynamic vortex/wave interaction theory by Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666) and the resonant absorption theories on Alfvén waves, developed in the solar physics community (e.g. Sakurai et al. Solar Phys., vol. 133, 1991, pp. 227–245; Goossens et al. Solar Phys., vol. 157, 1995, pp. 75–102). Similar to the hydrodynamic theory, the mechanism of the MHD states can be explained by the successive interaction of the roll, streak and wave fields, which are now defined both for the hydrodynamic and magnetic fields. The derivation of this ‘vortex/Alfvén wave interaction’ state is rather straightforward as the scalings for both of the hydrodynamic and magnetic fields are identical. It turns out that the leading-order magnetic field of the asymptotic states appears only when a small external magnetic field is present. However, it does not mean that purely shear-driven dynamos are not possible. In fact, the second class of ‘self-sustained shear-driven dynamo theory’ shows a magnetic generation that is slightly smaller in size in the absence of any external field. Despite its small size, the magnetic field causes the novel feedback mechanism in the velocity field through resonant absorption, wherein the magnetic wave becomes more strongly amplified than the hydrodynamic counterpart.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfvén, H. 1942 Existence of electromagnetic-hydrodynamic waves. I. Nature 150 (3805), 405406.Google Scholar
Ballai, I. & Erdélyi, R. 1998 Resonant absorption of nonlinear slow MHD waves in isotropic steady plasmas. I. Theory. Solar Phys. 180, 6579.Google Scholar
Ballai, I. & Ruderman, M. S. 2011 Nonlinear effects in resonant layers in solar and space plasmas. Space Sci. Rev. 158, 421450.Google Scholar
Benney, D. 1984 The evolution of disturbances in shear flows at high Reynolds numbers. Stud. Appl. Maths 70, 119.Google Scholar
Benney, D. & Chow, K. 1989 A mean flow first harmonic instabilities. Stud. Appl. Maths 80, 3773.Google Scholar
Bennett, J., Hall, P. & Smith, F. T. 1991 The strong nonlinear interaction of Tollmien–Schlighting waves and Taylor–Görtler vortices in curved channel flow. J. Fluid Mech. 223, 475495.Google Scholar
Brandenburg, A., Nordlund, A. A., Stein, R. F. & Torkelsson, U. 1995 Dynamo-generated turbulence and large scale magnetic fields in a Keplerian-shear Flow. Astrophys. J. 446, 741754.Google Scholar
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1209.Google Scholar
Brandenburg, A., Sokoloff, D. & Subramanian, K. 2012 Current status of turbulent dynamo theory: from large-scale to small-scale dynamos. Space Sci. Rev. 169, 123157.Google Scholar
Clack, C. T. M. & Ballai, I. 2008 Nonlinear theory of resonant slow waves in anisotropic and dispersive plasmas. Phys. Plasmas 15, 082310.Google Scholar
Clack, C. T. M. & Ballai, I. 2009 Mean shear flows generated by nonlinear resonant Alfvén waves. Phys. Plasmas 16, 072115.Google Scholar
Clack, C. T. M., Ballai, I. & Ruderman, M. S. 2009 On the validity of nonlinear Alfvén resonance in space plasmas. Astron. Astrophys. 494, 317327.Google Scholar
Cowling, T. G. 1934 The magnetic fields of sunspots. Mon. Not. R. Astron. Soc. 94, 3948.Google Scholar
Deguchi, K. 2015 Self-sustained states at Kolmogorov microscale. J. Fluid Mech. 781, R6.Google Scholar
Deguchi, K. 2017 Scaling of small vortices in stably stratified shear flows. J. Fluid Mech. 821, 582594.Google Scholar
Deguchi, K. 2019 High-speed shear driven dynamos. Part 2. Numerical analysis. J. Fluid Mech. (submitted) arXiv:1809.03855.Google Scholar
Deguchi, K. & Hall, P. 2014 The high Reynolds number asymptotic development of nonlinear equilibrium states in plane Couette flow. J. Fluid Mech. 750, 99112.Google Scholar
Deguchi, K. & Hall, P. 2016 On the instability of vortex-wave interaction states. J. Fluid Mech. 802, 634666.Google Scholar
Deguchi, K. & Walton, A. G. 2018 Bifurcation of nonlinear Tollmien-Schlichting waves in a high-speed channel flow. J. Fluid Mech. 843, 5397.Google Scholar
Dempsey, L. J., Deguchi, K., Hall, P. & Walton, A. G. 2016 Localized vortex/Tollmien–Schlichting wave interaction states in plane Poiseuille flow. J. Fluid Mech. 791, 97121.Google Scholar
Erdélyi, R. 1997 Analytical solutions for cusp resonance in dissipative MHD. Solar Phys. 171, 4959.Google Scholar
Erdélyi, R., Goossens, M. & Ruderman, M. S. 1995 Analytic solutions for resonant Alfvén waves in 1D magnetic flux tubes in dissipative stationary MHD. Solar Phys. 161, 123138.Google Scholar
Goossens, M., Erdélyi, R. & Ruderman, M. S. 2011 Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289338.Google Scholar
Goossens, M., Hollweg, J. V. & Sakurai, T. 1992 Resonant behaviour of MHD waves on magnetic flux tubes. III. Effect of equilibrium flow. Solar Phys. 138, 233255.Google Scholar
Goossens, M., Ruderman, M. S. & Hollweg, J. V. 1995 Dissipative MHD solutions for resonant Alfvén waves in 1-dimensional magnetic flux tubes. Solar Phys. 157, 75102.Google Scholar
Haberman, R. 1972 Critical layers in parallel flows. Stud. Appl. Maths 51, 139161.Google Scholar
Hall, P. 1983 The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130, 4158.Google Scholar
Hall, P. 2018 Vortex-wave interaction arrays: a sustaining mechanism for the log layer? J. Fluid Mech. 850, 4682.Google Scholar
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.Google Scholar
Hall, P. & Smith, F. T. 1988 The nonlinear interaction of Tollmien–Schlichting waves and Taylor–Görtler vortices in curved channel flows. Proc. R. Soc. Lond. A 417, 255282.Google Scholar
Hall, P. & Smith, F. T. 1990 Near Planar TS Waves and Longitudinal Vortices in Channel Flow: Nonlinear Interaction and Focussing. pp. 539. Springer.Google Scholar
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech. 227, 641666.Google Scholar
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1995 Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440, 742763.Google Scholar
Herreman, W. 2018 Minimal perturbation flows that trigger mean field dynamos in shear flows. J. Plasma Phys. 84, 735840305.Google Scholar
Kida, S., Yanase, S. & Mizushima, J. 1991 Statistical properties of MHD turbulence and turbulence dynamo. Phys. Fluids A 3, 457465.Google Scholar
Lin, C. C. 1945 On the stability of two-dimensional parallel flows. Part III. Stability in a viscous fluid. Q. Appl. Maths 3, 277301.Google Scholar
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.Google Scholar
Nauman, F. & Blackman, E. G. 2017 Sustained turbulence and magnetic energy in nonrotating shear flows. Phys. Rev. E 95, 033202.Google Scholar
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8, 31123127.Google Scholar
Rincon, F., Ogilvie, G. I. & Proctor, M. R. E. 2007 Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett. 98, 254502.Google Scholar
Rincon, F., Ogilvie, G. I., Proctor, M. R. E. & Cossu, C. 2008 Subcritical dynamos in shear flows. Astron. Nachr. 329, 750761.Google Scholar
Riols, A., Rincon, F., Cossu, C., Lesur, G., Longaretti, P.-Y., Ogilvie, G. I. & Herault, J. 2013 Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow. J. Fluid Mech. 731, 145.Google Scholar
Ruderman, M. S. & Goossens, M. 1993 Nonlinearity effects on resonant absorption of surface Alfvén waves in incompressible plasmas. Solar Phys. 143 (1), 6988.Google Scholar
Ruderman, M. S., Goossens, M. & Andries, J. 2010 Nonlinear propagating kink waves in thin magnetic tubes. Phys. Plasmas 17, 082108.Google Scholar
Ruderman, M. S., Hollweg, J. V. & Goossens, M. 1997 Nonlinear theory of resonant slow waves in dissipative layers. Phys. Plasmas 4 (1), 7590.Google Scholar
Ruderman, M. S., Tirry, W. J. & Goossens, M. 1995 Non-stationary resonant Alfvén surface waves in one-dimensional magnetic plasmas. J. Plasma Phys. 54 (2), 129148.Google Scholar
Sakurai, T., Goossens, M. & Hollweg, J. V. 1991 Resonant behaviour of MHD waves on magnetic flux tubes. I. Connection formulae at the resonant surfaces. Solar Phys. 133, 227245.Google Scholar
Sekimoto, A., Dong, S. & Jiménez, J. 2016 Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28, 035101.Google Scholar
Slattery, J. C. 1999 Advanced Transport Phenomena. Cambridge University Press.Google Scholar
Smith, F. T. 1979 Instability of flow through pipes of general cross-section. Part 1. Mathematika 26, 187210.Google Scholar
Smith, F. T. & Bodonyi, R. J. 1982 Nonlinear critical layers and their development in streaming-flow instability. J. Fluid Mech. 118, 165185.Google Scholar
Veronis, G. 1970 The analogy between rotating and stratified fluids. Annu. Rev. Fluid Mech. 2, 3766.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.Google Scholar
Wang, J., Gibson, J. F. & Waleffe, F. 2007 Lower branch coherent states: transition and control. Phys. Rev. Lett. 98, 204501.Google Scholar
Zel’dovich, Y. B. 1957 The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP 4, 460462.Google Scholar