Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-08T01:24:56.394Z Has data issue: false hasContentIssue false

How electrostatic forces affect particle behaviour in turbulent channel flows

Published online by Cambridge University Press:  13 July 2023

Huan Zhang
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Yuankai Cui
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng*
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi'an 710071, PR China
*
Email address for correspondence: xjzheng@lzu.edu.cn

Abstract

In dispersed two-phase flows, particle electrification is a prevalent phenomenon that plays a crucial role in particle transport. However, the influences of electrostatic forces on particle behaviour in wall-bounded turbulent flows, especially in bidisperse cases, is not well understood. In this study, using direct numerical simulations based on a coupled Eulerian–Lagrangian point-particle approach at friction Reynolds number $Re_\tau =550$, we demonstrate that when the electrostatic Stokes number is of the order of $O(10^{-1})$, electrostatic forces could considerably alter particle behaviour in both monodisperse and bidisperse particle-laden turbulent channel flows. Specifically, the wall-normal profiles of the particle concentration are determined by the competition of turbophoresis, biased sampling and electrostatic effects. The electrostatic forces are found to reduce the concentrations of lighter particles by electrostatic drift directly, whereas they alter those of heavier particles by strengthening turbophoresis indirectly. With increasing electrical charge, the dynamics of the lighter particles remains approximately unchanged, but that of the heavier particles is modulated significantly due to their relatively strong particle–electrostatic interaction. In the near-wall region, electrostatic forces tend to homogenize the distribution of lighter particles in the spanwise direction by inhibiting the formation and destruction of particle clusterings and voids, thereby maintaining the anisotropic streaky clusterings. Furthermore, even though the clustering dynamics remains unchanged, the spatial extents of the clusterings at the channel centreline are suppressed (enhanced) by a factor of two, probably due to the remarkable reduction (increase) of particle concentration in this layer.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alipchenkov, V.M., Zaichik, L.I. & Petrov, O.F. 2004 Clustering of charged particles in isotropic turbulence. High Temp. 42, 919927.CrossRefGoogle Scholar
Apte, S.V., Oujia, T., Matsuda, K., Kadoch, B., He, X. & Schneider, K. 2022 Clustering of inertial particles in turbulent flow through a porous unit cell. J.Fluid Mech. 937, A9.CrossRefGoogle Scholar
Arcen, B., Tanière, A. & Oesterlé, B. 2006 On the influence of near-wall forces in particle-laden channel flows. Intl J. Multiphase Flow 32, 13261339.CrossRefGoogle Scholar
Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13, 24372440.CrossRefGoogle Scholar
Aurenhammer, F. 1991 Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345405.CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35, 801810.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Boutsikakis, A., Fede, P. & Simonin, O. 2022 Effect of electrostatic forces on the dispersion of like-charged solid particles transported by homogeneous isotropic turbulence. J.Fluid Mech. 938, A33.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.CrossRefGoogle Scholar
Capecelatro, J. & Desjardins, O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J.Comput. Phys. 238, 131.CrossRefGoogle Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J.Aerosol Sci. 32, 565568.Google Scholar
Cimarelli, C., Alatorre-Ibargüengoitia, M.A., Kueppers, U., Scheu, B. & Dingwell, D.B. 2014 Experimental generation of volcanic lightning. Geology 42, 7982.CrossRefGoogle Scholar
Costa, P. 2018 A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows. Comput. Maths Applics. 76, 18531862.CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2020 Interface-resolved simulations of small inertial particles in turbulent channel flow. J.Fluid Mech. 883, A54.CrossRefGoogle Scholar
Di Renzo, M., Johnson, P.L., Bassenne, M., Villafañe, L. & Urzay, J. 2019 Mitigation of turbophoresis in particle-laden turbulent channel flows by using incident electric fields. Phys. Rev. Fluids 4, 124303.CrossRefGoogle Scholar
Di Renzo, M. & Urzay, J. 2018 Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9, 1676.CrossRefGoogle ScholarPubMed
Dritselis, C.D. & Vlachos, N.S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20, 055103.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Ferenc, J.S. & Néda, Z. 2007 On the size distribution of Poisson Voronoi cells. Physica A 385, 518526.CrossRefGoogle Scholar
Fong, K.O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J.Fluid Mech. 872, 367406.CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D.H. 2023 Direct numerical simulation of particle-laden flow in an open channel at $Re_\tau =5186$. J.Fluid Mech. 957, A3.CrossRefGoogle Scholar
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14, 643652.CrossRefGoogle Scholar
Grosshans, H., Bissinger, C., Calero, M. & Papalexandris, M.V. 2021 The effect of electrostatic charges on particle-laden duct flows. J.Fluid Mech. 909, A21.CrossRefGoogle Scholar
Grosshans, H. & Papalexandris, M.V. 2016 Large eddy simulation of triboelectric charging in pneumatic powder transport. Powder Technol. 301, 10081015.CrossRefGoogle Scholar
Grosshans, H. & Papalexandris, M.V. 2017 a Direct numerical simulation of triboelectric charging in particle-laden turbulent channel flows. J.Fluid Mech. 818, 465491.CrossRefGoogle Scholar
Grosshans, H. & Papalexandris, M.V. 2017 b On the accuracy of the numerical computation of the electrostatic forces between charged particles. Powder Technol. 322, 185194.CrossRefGoogle Scholar
Hamamoto, N., Nakajima, Y. & Sato, T. 1992 Experimental discussion on maximum surface charge density of fine particles sustainable in normal atmosphere. J.Electrostat. 28, 161173.CrossRefGoogle Scholar
Horwitz, J.A.K. & Mani, A. 2016 Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows. J.Comput. Phys. 318, 85109.CrossRefGoogle Scholar
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J.Fluid Mech. 935, A18.CrossRefGoogle Scholar
Johnson, P.L. 2020 Predicting the impact of particle–particle collisions on turbophoresis with a reduced number of computational particles. Intl J. Multiphase Flow 124, 103182.CrossRefGoogle Scholar
Johnson, P.L., Bassenne, M. & Moin, P. 2020 Turbophoresis of small inertial particles: theoretical considerations and application to wall-modelled large-eddy simulations. J.Fluid Mech. 883, A27.CrossRefGoogle Scholar
Joseph, G.G., Zenit, R., Hunt, M.L. & Rosenwinkel, A.M. 2001 Particle–wall collisions in a viscous fluid. J.Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Karnik, A.U. & Shrimpton, J.S. 2012 Mitigation of preferential concentration of small inertial particles in stationary isotropic turbulence using electrical and gravitational body forces. Phys. Fluids 24, 073301.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J.Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Kok, J.F. & Renno, N.O. 2006 Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33, L19S10.CrossRefGoogle Scholar
Kolehmainen, J., Ozel, A., Boyce, C.M. & Sundaresan, S. 2016 A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J. 62, 22822295.CrossRefGoogle Scholar
Kolehmainen, J., Ozel, A. & Sundaresan, S. 2018 Eulerian modelling of gas–solid flows with triboelectric charging. J.Fluid Mech. 848, 340369.CrossRefGoogle Scholar
Kulick, J.D., Fessler, J.R. & Eaton, J.K. 1994 Particle response and turbulence modification in fully developed channel flow. J.Fluid Mech. 277, 109134.CrossRefGoogle Scholar
Lacks, D.J. & Sankaran, R.M. 2011 Contact electrification of insulating materials. J.Phys. D: Appl. Phys. 44, 453001.CrossRefGoogle Scholar
Lavrinenko, A., Fabregat, A. & Pallares, J. 2022 Comparison between fully resolved and time-averaged simulations of particle cloud dispersion produced by a violent expiratory event. Acta Mechanica Sin. 38, 721489.CrossRefGoogle ScholarPubMed
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau \approx 5200$. J.Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Li, J., Wang, H., Liu, Z., Chen, S. & Zheng, C. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas–particle channel flow. Exp. Fluids 53, 13851403.CrossRefGoogle Scholar
Liu, Y., Shen, L., Zamansky, R. & Coletti, F. 2020 Life and death of inertial particle clusters in turbulence. J.Fluid Mech. 902, R1.CrossRefGoogle Scholar
Lu, J., Nordsiek, H., Saw, E.W. & Shaw, R.A. 2010 Clustering of charged inertial particles in turbulence. Phys. Rev. Lett. 104, 184505.CrossRefGoogle ScholarPubMed
Lu, J. & Shaw, R.A. 2015 Charged particle dynamics in turbulence: theory and direct numerical simulations. Phys. Fluids 27, 065111.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J.Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F. & Portela, L.M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34, 879893.CrossRefGoogle Scholar
Marshall, J.S. 2009 Discrete-element modeling of particulate aerosol flows. J.Comput. Phys. 228, 15411561.CrossRefGoogle Scholar
Mather, T.A. & Harrison, R.G. 2006 Electrification of volcanic plumes. Surv. Geophys. 27, 387432.CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J.Fluid Mech. 174, 441465.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
Méndez Harper, J. & Dufek, J. 2016 The effects of dynamics on the triboelectrification of volcanic ash. J.Geophys. Res.: Atmos. 121, 82098228.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.CrossRefGoogle Scholar
Motoori, Y., Wong, C. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J.Fluid Mech. 942, A3.CrossRefGoogle Scholar
Nifuku, M. & Katoh, H. 2003 A study on the static electrification of powders during pneumatic transportation and the ignition of dust cloud. Powder Technol. 135, 234242.CrossRefGoogle Scholar
Ninto, Y. & Garcia, M.H. 1996 Experiments on particle–turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. J.Fluid Mech. 326, 285319.CrossRefGoogle Scholar
Oka, S. & Goto, S. 2021 Generalized sweep-stick mechanism of inertial-particle clustering in turbulence. Phys. Rev. Fluids 6, 044605.CrossRefGoogle Scholar
Oujia, T., Matsuda, K. & Schneider, K. 2020 Divergence and convergence of inertial particles in high-Reynolds-number turbulence. J.Fluid Mech. 905, A14.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 27332755.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1997 Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids 9, 37863807.CrossRefGoogle Scholar
Pedinotti, S., Mariotti, G. & Banerjee, S. 1992 Direct numerical simulation of particle behaviour in the wall region of turbulent flows in horizontal channels. Intl J. Multiphase Flow 18, 927941.CrossRefGoogle Scholar
Petersen, A.J., Baker, L. & Coletti, F. 2019 Experimental study of inertial particles clustering and settling in homogeneous turbulence. J.Fluid Mech. 864, 925970.CrossRefGoogle Scholar
Picano, F., Sardina, G. & Casciola, C.M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093305.CrossRefGoogle Scholar
Reeks, M.W. 1983 The transport of discrete particles in inhomogeneous turbulence. J.Aerosol Sci. 14, 729739.CrossRefGoogle Scholar
Renno, N.O. & Kok, J.F. 2008 Electrical activity and dust lifting on Earth, Mars, and beyond. Space Sci. Rev. 137, 419434.CrossRefGoogle Scholar
Rice, M.A., Willetts, B.B. & McEwan, I.K. 1995 An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology 42, 695706.CrossRefGoogle Scholar
Rudge, W.D. 1913 Atmospheric electrification during South African dust storms. Nature 91, 3132.CrossRefGoogle Scholar
Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C.M. 2011 Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86, 519532.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C.M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J.Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Schiller, L. & Naumann, A. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Schmidt, D.S., Schmidt, R.A. & Dent, J.D. 1998 Electrostatic force on saltating sand. J.Geophys. Res.: Atmos. 103, 89979001.CrossRefGoogle Scholar
Schumann, U. & Sweet, R.A. 1988 Fast Fourier transforms for direct solution of Poisson's equation with staggered boundary conditions. J.Comput. Phys. 75, 123137.CrossRefGoogle Scholar
Sikovsky, D.P. 2014 Singularity of inertial particle concentration in the viscous sublayer of wall-bounded turbulent flows. Flow Turbul. Combust. 92, 4164.CrossRefGoogle Scholar
Sippola, P., Kolehmainen, J., Ozel, A., Liu, X., Saarenrinne, P. & Sundaresan, S. 2018 Experimental and numerical study of wall layer development in a tribocharged fluidized bed. J.Fluid Mech. 849, 860884.CrossRefGoogle Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35, 827839.CrossRefGoogle Scholar
Tagawa, Y., Mercado, J.M., Prakash, V.N., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J.Fluid Mech. 693, 201215.CrossRefGoogle Scholar
Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J.Fluid Mech. 752, 310348.CrossRefGoogle Scholar
Vance, M.W., Squires, K.D. & Simonin, O. 2006 Properties of the particle velocity field in gas–solid turbulent channel flow. Phys. Fluids 18, 063302.CrossRefGoogle Scholar
Wallace, J.M., Eckelmann, H. & Brodkey, R.S. 1972 The wall region in turbulent shear flow. J.Fluid Mech. 54, 3948.CrossRefGoogle Scholar
Wang, G., Fong, K.O., Coletti, F., Capecelatro, J. & Richter, D.H. 2019 Inertial particle velocity and distribution in vertical turbulent channel flow: a numerical and experimental comparison. Intl J. Multiphase Flow 120, 103105.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J.Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Wang, L.P., Wexler, A.S. & Zhou, Y. 2000 Statistical mechanical description and modelling of turbulent collision of inertial particles. J.Fluid Mech. 415, 117153.CrossRefGoogle Scholar
Williams, F.A. 1958 Spray combustion and atomization. Phys. Fluids 1, 541545.CrossRefGoogle Scholar
Yair, Y., Katz, S., Yaniv, R., Ziv, B. & Price, C. 2016 An electrified dust storm over the Negev Desert, Israel. Atmos. Res. 181, 6371.CrossRefGoogle Scholar
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions. J.Fluid Mech. 442, 303334.CrossRefGoogle Scholar
Yang, F.L. & Hunt, M.L. 2006 Dynamics of particle–particle collisions in a viscous liquid. Phys. Fluids 18, 121506.CrossRefGoogle Scholar
Yao, Y. & Capecelatro, J. 2018 Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach. Phys. Rev. Fluids 3, 034301.CrossRefGoogle Scholar
Zhang, H. & Zheng, X. 2018 Quantifying the large-scale electrification equilibrium effects in dust storms using field observations at Qingtu Lake Observatory. Atmos. Chem. Phys. 18, 1708717097.CrossRefGoogle Scholar
Zhang, H. & Zhou, Y.H. 2020 Reconstructing the electrical structure of dust storms from locally observed electric field data. Nat. Commun. 11, 5072.CrossRefGoogle ScholarPubMed
Zhang, H. & Zhou, Y.H. 2023 Unveiling the spectrum of electrohydrodynamic turbulence in dust storms. Nat. Commun. 14, 408.CrossRefGoogle ScholarPubMed
Zhao, L., Andersson, H.I. & Gillissen, J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J.Fluid Mech. 715, 3259.CrossRefGoogle Scholar
Zheng, X.J. 2013 Electrification of wind-blown sand: recent advances and key issues. Eur. Phys. J. E 36, 138.CrossRefGoogle ScholarPubMed
Zheng, X., Feng, S. & Wang, P. 2021 Modulation of turbulence by saltating particles on erodible bed surface. J.Fluid Mech. 918, A16.CrossRefGoogle Scholar
Zheng, X.J., Huang, N. & Zhou, Y.H. 2003 Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. J.Geophys. Res.: Atmos. 108, 4322.CrossRefGoogle Scholar
Zhu, H., Pan, C., Wang, G., Liang, Y., Ji, X. & Wang, J. 2021 Attached eddy-like particle clustering in a turbulent boundary layer under net sedimentation conditions. J.Fluid Mech. 920, A53.CrossRefGoogle Scholar