Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-14T05:36:32.791Z Has data issue: false hasContentIssue false

The impact of non-frozen turbulence on the modelling of the noise from serrated trailing edges

Published online by Cambridge University Press:  12 August 2024

H. Tian
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
B. Lyu*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China Laoshan Laboratory, Qingdao 266100, PR China
*
Email address for correspondence: b.lyu@pku.edu.cn

Abstract

Serrations are commonly employed to mitigate the turbulent boundary layer trailing-edge noise. However, significant discrepancies persist between model predictions and experimental observations. In this paper, we show that this results from the frozen turbulence assumption. A fully developed turbulent boundary layer over a flat plate is first simulated using the large-eddy simulation method, with the turbulence at the inlet generated using the digital filter method. The space–time correlations and spectral characteristics of wall pressure fluctuations are examined. The simulation results demonstrate that the coherence function decays in the streamwise direction, deviating from the constant value of unity assumed in the frozen turbulence assumption. By considering an exponential decay function, we relax the frozen turbulence assumption and develop a prediction model that accounts for the intrinsic non-frozen nature of turbulent boundary layers. To facilitate a direct comparison with frozen models, a correction coefficient is introduced to account for the influence of non-frozen turbulence. The comparison between the new and original models demonstrates that the new model predicts lower noise reductions, aligning more closely with the experimental observations. The physical mechanism underlying the overprediction of the noise model assuming frozen turbulence is discussed. The overprediction is due to the decoherence of the phase variation along the serrated trailing edge. Consequently, the ratio of the serration amplitude to the streamwise frequency-dependent correlation length is identified as a crucial parameter in determining the correct prediction of far-field noise.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiet, R.K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41 (4), 407420.CrossRefGoogle Scholar
Amiet, R.K. 1976 Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47 (3), 387393.CrossRefGoogle Scholar
Amiet, R.K. 1978 Effect of the incident surface pressure field on noise due to turbulent flow past a trailing edge. J. Sound Vib. 57 (2), 305306.CrossRefGoogle Scholar
Arce-León, C., Ragni, D., Pröbsting, S., Scarano, F. & Madsen, J. 2016 Flow topology and acoustic emissions of trailing edge serrations at incidence. Exp. Fluids 57, 91.CrossRefGoogle Scholar
Avallone, F., Pröbsting, S. & Ragni, D. 2016 Three-dimensional flow field over a trailing-edge serration and implications on broadband noise. Phys. Fluids 28, 117101.CrossRefGoogle Scholar
Avallone, F., Van Der Velden, W.C.P., Ragni, D. & Casalino, D. 2018 Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations. J. Fluid Mech. 848, 560591.CrossRefGoogle Scholar
Ayton, L.J. 2018 Analytic solution for aerodynamic noise generated by plates with spanwise-varying trailing edges. J. Fluid Mech. 849, 448466.CrossRefGoogle Scholar
Ayton, L.J., Szoke, M., Paruchuri, C.C., Devenport, W.J. & Alexander, W.N. 2021 Trailing-edge serrations: improving theoretical noise reduction models. AIAA Paper 2021-2111.CrossRefGoogle Scholar
Bies, D.W. 1966 A review of flight and wind tunnel measurements of boundary layer pressure fluctuations and induced structural response. NASA Tech. Rep. CR–626.CrossRefGoogle Scholar
Blake, W.K. 2012 Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow–Structure Interactions. Elsevier.Google Scholar
Bull, M.K. 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28 (4), 719754.CrossRefGoogle Scholar
Bull, M.K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.CrossRefGoogle Scholar
Caiazzo, A., Pargal, S., Wu, H., Sanjose, M., Yuan, J. & Moreau, S. 2023 On the effect of adverse pressure gradients on wall-pressure statistics in a controlled-diffusion aerofoil turbulent boundary layer. J. Fluid Mech. 960, A17.CrossRefGoogle Scholar
Chase, D.M. 1987 The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112, 125147.CrossRefGoogle Scholar
Corcos, G.M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18 (3), 353378.CrossRefGoogle Scholar
Del Álamo, J.C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor's approximation. J. Fluid Mech. 640, 526.CrossRefGoogle Scholar
Dennis, D.J.C. & Nickels, T.B. 2008 On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.CrossRefGoogle Scholar
Farabee, T.M. & Casarella, M.J. 1991 Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids A 3 (10), 24102420.CrossRefGoogle Scholar
Fisher, M.J. & Davies, P.O.A.L. 1964 Correlation measurements in a non-frozen pattern of turbulence. J. Fluid Mech. 18 (1), 97116.CrossRefGoogle Scholar
Gloerfelt, X. & Berland, J. 2013 Turbulent boundary-layer noise: direct radiation at Mach number 0.5. J. Fluid Mech. 723, 318351.CrossRefGoogle Scholar
Goody, M. 2004 Empirical spectral model of surface pressure fluctuations. AIAA J. 42 (9), 17881794.CrossRefGoogle Scholar
Gruber, M. 2012 Airfoil noise reduction by edge treatments. PhD thesis, University of Southampton, Southampton, UK.Google Scholar
Halimi, A., Marinus, B.G. & Larbi, S. 2019 Analytical prediction of broadband noise from mini-RPA propellers with serrated edges. Intl J. Aeroacoust. 18 (4–5), 517535.CrossRefGoogle Scholar
He, G., Jin, G. & Yang, Y. 2017 Space–time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 5170.CrossRefGoogle Scholar
He, G. & Zhang, J. 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E 73 (5), 055303.CrossRefGoogle ScholarPubMed
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108 (2), 024502.CrossRefGoogle Scholar
Howe, M.S. 1991 a Aerodynamic noise of a serrated trailing edge. J. Fluids Struct. 5, 3345.CrossRefGoogle Scholar
Howe, M.S. 1991 b Noise produced by a sawtooth trailing edge. J. Acoust. Soc. Am. 90, 482487.CrossRefGoogle Scholar
Hu, N. 2021 Coherence of wall pressure fluctuations in zero and adverse pressure gradients. J. Sound Vib. 511, 116316.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Clark, A.R. 1981 Measurements of wavenumber–celerity spectrum in plane and axisymmetric jets. AIAA J. 19 (1), 5155.CrossRefGoogle Scholar
Hwang, Y.F., Bonness, W.K. & Hambric, S.A. 2009 Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319 (1–2), 199217.CrossRefGoogle Scholar
Jaworski, J.W. & Peake, N. 2020 Aeroacoustics of silent owl flight. Annu. Rev. Fluid Mech. 52 (1), 395420.CrossRefGoogle Scholar
Lee, S. 2018 Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows. AIAA J. 56 (5), 18181829.CrossRefGoogle Scholar
Lee, S., Ayton, L., Bertagnolio, F., Moreau, S., Chong, T.P. & Joseph, P. 2021 Turbulent boundary layer trailing-edge noise: theory, computation, experiment, and application. Prog. Aerosp. Sci. 126, 100737.CrossRefGoogle Scholar
Lin, C.C. 1953 On Taylor's hypothesis and the acceleration terms in the Navier–Stokes equation. Q. Appl. Maths 10 (4), 295306.CrossRefGoogle Scholar
Lyu, B. 2023 Analytical Green's function for the acoustic scattering by a flat plate with a serrated edge. J. Fluid Mech. 961, A33.CrossRefGoogle Scholar
Lyu, B. & Ayton, L.J. 2020 Rapid noise prediction models for serrated leading and trailing edges. J. Sound Vib. 469, 115136.CrossRefGoogle Scholar
Lyu, B. & Azarpeyvand, M. 2017 On the noise prediction for serrated leading edges. J. Fluid Mech. 826, 205234.CrossRefGoogle Scholar
Lyu, B., Azarpeyvand, M. & Sinayoko, S. 2016 Prediction of noise from serrated trailing edges. J. Fluid Mech. 793, 556588.CrossRefGoogle Scholar
Mayer, Y.D., Lyu, B., Jawahar, H.K. & Azarpeyvand, M. 2019 A semi-analytical noise prediction model for airfoils with serrated trailing edges. Renew. Energy 143, 679691.CrossRefGoogle Scholar
Narayanan, S., Chaitanya, P., Haeri, S., Joseph, P., Kim, J.W. & Polacsek, C. 2015 Airfoil noise reductions through leading edge serrations. Phys. Fluids 27 (2), 025109.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Oerlemans, S., Fisher, M., Maeder, T. & Kögler, K. 2009 Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J. 47 (6), 14701481.CrossRefGoogle Scholar
Palumbo, D. 2013 The variance of convection velocity in the turbulent boundary layer and its effect on coherence length. J. Sound Vib. 332 (15), 36923705.CrossRefGoogle Scholar
Pereira, L.T.L., Avallone, F., Ragni, D. & Scarano, F. 2022 A physics-based description and modelling of the wall-pressure fluctuations on a serrated trailing edge. J. Fluid Mech. 938, A28.CrossRefGoogle Scholar
Renard, N. & Deck, S. 2015 On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number $Re_\theta =13\,000$. J. Fluid Mech. 775, 105148.CrossRefGoogle Scholar
Sandberg, R.D. & Sandham, N.D. 2008 Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation. J. Fluid Mech. 596, 353385.CrossRefGoogle Scholar
Schlatter, P., Li, Q., Brethouwer, G., Johansson, A.V. & Henningson, D.S. 2010 Simulations of spatially evolving turbulent boundary layers up to $Re_\theta = 4300$. Intl J. Heat Fluid Flow 31 (3), 251261.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Smol'yakov, A.V. 2006 A new model for the cross spectrum and wavenumber–frequency spectrum of turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 52 (3), 331337.CrossRefGoogle Scholar
Stalnov, O., Chaitanya, P. & Joseph, P.F. 2016 Towards a non-empirical trailing edge noise prediction model. J. Sound Vib. 372, 5068.CrossRefGoogle Scholar
Stewart, J. 2011 Calculus. Cengage Learning.Google Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. 164 (919), 476490.Google Scholar
Tian, H. & Lyu, B. 2022 Prediction of broadband noise from rotating blade elements with serrated trailing edges. Phys. Fluids 34 (8), 085109.CrossRefGoogle Scholar
Van Der Velden, W.C.P., Van Zuijlen, A.H., De Jong, A.T. & Bijl, H. 2015 Estimation of spanwise pressure coherence under a turbulent boundary layer. AIAA J. 53 (10), 31343138.CrossRefGoogle Scholar
Wang, W., Guan, X.L. & Jiang, N. 2014 TRPIV investigation of space–time correlation in turbulent flows over flat and wavy walls. Acta Mechanica Sin. 30 (4), 468479.CrossRefGoogle Scholar
Wang, Y., Vita, G., Fraga, B., Lyu, C., Wang, J. & Hemida, H. 2022 Influence of turbulent inlet boundary condition on large eddy simulation over a flat plate boundary layer. Intl J. Comput. Fluid Dyn. 36 (3), 232259.CrossRefGoogle Scholar
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.CrossRefGoogle Scholar
Willmarth, W.W. 1975 Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7 (1), 1336.CrossRefGoogle Scholar
Wills, J. 1964 On convection velocities in turbulent shear flows. J. Fluid Mech. 20 (3), 417432.CrossRefGoogle Scholar
Zhao, X. & He, G. 2009 Space–time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79 (4), 046316.CrossRefGoogle ScholarPubMed
Zhou, P., Liu, Q., Zhong, S., Fang, Y. & Zhang, X. 2020 A study of the effect of serration shape and flexibility on trailing edge noise. Phys. Fluids 32 (12), 127114.CrossRefGoogle Scholar