Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T20:24:51.789Z Has data issue: false hasContentIssue false

Inertial range scaling of inhomogeneous turbulence

Published online by Cambridge University Press:  27 December 2023

Ryo Araki
Affiliation:
Univ Lyon, CNRS, Ecole Centrale de Lyon, INSA Lyon, Univ Claude Bernard Lyon 1, LMFA, UMR5509, 69340 Ecully, France Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Wouter J.T. Bos*
Affiliation:
Univ Lyon, CNRS, Ecole Centrale de Lyon, INSA Lyon, Univ Claude Bernard Lyon 1, LMFA, UMR5509, 69340 Ecully, France
*
Email address for correspondence: wouter.bos@ec-lyon.fr

Abstract

We investigate how inhomogeneity influences the $k^{-5/3}$ inertial range scaling of turbulent kinetic energy spectra (with $k$ the wavenumber). For weak statistical inhomogeneity, the energy spectrum can be described as an equilibrium spectrum plus a perturbation. Theoretical arguments suggest that this latter contribution scales as $k^{-7/3}$. This prediction is assessed using direct numerical simulations of three-dimensional Kolmogorov flow.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertoglio, J.-P., Bataille, F. & Marion, J.-D. 2001 Two-point closures for weakly compressible turbulence. Phys. Fluids 13 (1), 290310.CrossRefGoogle Scholar
Bertoglio, J.-P. & Jeandel, D. 1987 A simplified spectral closure for inhomogeneous turbulence: application to the boundary layer. In Turbulent Shear Flows 5: Selected Papers from the Fifth International Symposium on Turbulent Shear Flows, Cornell University, Ithaca, New York, August 7–9 1985 (ed. F. Durst, B.E. Launder, J.L. Lumley, F.W. Schmidt & J.H. Whitelaw), pp. 19–30. Springer.CrossRefGoogle Scholar
Besnard, D.C., Harlow, F.H., Rauenzahn, R.M. & Zemach, C. 1996 Spectral transport model for turbulence. Theor. Comput. Fluid Dyn. 8 (1), 135.CrossRefGoogle Scholar
Borue, V. & Orszag, S.A. 1996 Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers. J. Fluid Mech. 306, 293323.CrossRefGoogle Scholar
Bos, W.J.T. 2020 Production and dissipation of kinetic energy in grid turbulence. Phys. Rev. Fluids 5 (10), 104607.CrossRefGoogle Scholar
Bos, W.J.T. & Rubinstein, R. 2017 Dissipation in unsteady turbulence. Phys. Rev. Fluids 2 (2), 022601.CrossRefGoogle Scholar
Briard, A., Gréa, B.-J., Mons, V., Cambon, C., Gomez, T. & Sagaut, P. 2018 Advanced spectral anisotropic modelling for shear flows. J. Turbul. 19 (7), 570599.CrossRefGoogle Scholar
Cadiou, A., Hanjalić, K. & Stawiarski, K. 2004 A two-scale second-moment turbulence closure based on weighted spectrum integration. Theor. Comput. Fluid Dyn. 18 (1), 126.CrossRefGoogle Scholar
Cambon, C., Jeandel, D. & Mathieu, J. 1981 Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247262.CrossRefGoogle Scholar
Delache, A., Cambon, C. & Godeferd, F. 2014 Scale by scale anisotropy in freely decaying rotating turbulence. Phys. Fluids 26 (2), 025104.CrossRefGoogle Scholar
Horiuti, K. & Ozawa, T. 2011 Multimode stretched spiral vortex and nonequilibrium energy spectrum in homogeneous shear flow turbulence. Phys. Fluids 23 (3), 035107.CrossRefGoogle Scholar
Horiuti, K. & Tamaki, T. 2013 Nonequilibrium energy spectrum in the subgrid-scale one-equation model in large-eddy simulation. Phys. Fluids 25 (12), 125104.CrossRefGoogle Scholar
Ishihara, T., Yoshida, K. & Kaneda, Y. 2002 Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow. Phys. Rev. Lett. 88 (15), 154501.CrossRefGoogle Scholar
Jeandel, D., Brison, J.F. & Mathieu, J. 1978 Modeling methods in physical and spectral space. Phys. Fluids 21 (2), 169182.CrossRefGoogle Scholar
Kaneda, Y. & Yoshida, K. 2004 Small-scale anisotropy in stably stratified turbulence. New J. Phys. 6 (1), 34.CrossRefGoogle Scholar
Knight, B. & Sirovich, L. 1990 Kolmogorov inertial range for inhomogeneous turbulent flows. Phys. Rev. Lett. 65 (11), 1356.CrossRefGoogle ScholarPubMed
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kraichnan, R.H. 1971 An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech. 47 (3), 513524.CrossRefGoogle Scholar
Kurien, S., L'vov, V.S., Procaccia, I. & Sreenivasan, K.R. 2000 Scaling structure of the velocity statistics in atmospheric boundary layers. Phys. Rev. E 61 (1), 407.CrossRefGoogle ScholarPubMed
Laporta, A. 1995 Etude spectrale et modélisation de la turbulence inhomogène. PhD thesis, Ecole Centrale de Lyon.Google Scholar
Laporta, A. & Bertoglio, J.-P. 1995 A model for inhomogeneous turbulence based on two-point correlations. In Advances in Turbulence V: Proceedings of the Fifth European Turbulence Conference, Siena, Italy, 5–8 July 1994 (ed. R. Benzi), pp. 286–297. Springer.CrossRefGoogle Scholar
Leith, C.E. 1967 Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10 (7), 14091416.CrossRefGoogle Scholar
Liao, Z.-J. & Su, W.-D. 2015 Kolmogorov's hypotheses and global energy spectrum of turbulence. Phys. Fluids 27 (4), 041701.CrossRefGoogle Scholar
Moser, R.D. 1994 Kolmogorov inertial range spectra for inhomogeneous turbulence. Phys. Fluids 6 (2), 794801.CrossRefGoogle Scholar
Musacchio, S. & Boffetta, G. 2014 Turbulent channel without boundaries: the periodic Kolmogorov flow. Phys. Rev. E 89 (2), 023004.CrossRefGoogle ScholarPubMed
Parpais, S. & Bertoglio, J.-P. 1996 A spectral closure for inhomogeneous turbulence applied to turbulent confined flow. In Advances in Turbulence VI: Proceedings of the Sixth European Turbulence Conference, held in Lausanne, Switzerland, 2–5 July 1996 (ed. S. Gavrilakis, L. Machiels & P.A. Monkewitz), pp. 75–76. Springer.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rubinstein, R. & Clark, T. 2022 Reassessment of the Classical Turbulence Closures. Cambridge Scholars Publishing.Google Scholar
Rubinstein, R. & Clark, T.T. 2005 Self-similar turbulence evolution and the dissipation rate transport equation. Phys. Fluids 17 (9), 095104.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Touil, H., Bertoglio, J.-P. & Shao, L. 2002 The decay of turbulence in a bounded domain. J. Turbul. 3 (1), 049.CrossRefGoogle Scholar
Woodruff, S.L. & Rubinstein, R. 2006 Multiple-scale perturbation analysis of slowly evolving turbulence. J. Fluid Mech. 565, 95103.CrossRefGoogle Scholar
Wu, W., Schmitt, F.G., Calzavarini, E. & Wang, L. 2021 A quadratic Reynolds stress development for the turbulent Kolmogorov flow. Phys. Fluids 33 (12), 125129.CrossRefGoogle Scholar
Yoshizawa, A. 1984 Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27 (6), 13771387.CrossRefGoogle Scholar
Yoshizawa, A. 1994 Nonequilibrium effect of the turbulent-energy-production process on the inertial-range energy spectrum. Phys. Rev. E 49 (5), 4065.CrossRefGoogle ScholarPubMed