Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-29T06:33:58.710Z Has data issue: false hasContentIssue false

The influence of hypersonic free-stream conicity on the flow over a sphere

Published online by Cambridge University Press:  29 July 2024

Sangdi Gu*
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
Chih-Yung Wen
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
Jiaao Hao
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
Wentao Wang
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Road, Beijing 100190, PR China
Qiu Wang
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Road, Beijing 100190, PR China
*
Email address for correspondence: sangdi.gu@polyu.edu.hk

Abstract

The influence of free-stream conicity on the various aspects of the flow over a spherical test model is examined using both analytical and numerical methods. For the analytical method, a simple closed-form analytical model is assembled. Six different free-stream conditions with different Mach numbers, Reynolds numbers and thermochemistry are tested at four different degrees of conicity corresponding to those which can realistically be encountered in experiments. It is found that the results around the stagnation point are mostly insensitive to the flow condition and gas type, except for some mild non-equilibrium effects, and excellent agreement between the analytical and numerical results exists. The shock stand-off distance on the stagnation streamline is shown to decrease with increasing conicity. This decrease increases the tangential velocity gradient at the stagnation point, increasing the stagnation point heat flux and decreasing the stagnation point boundary layer thickness. The free-stream conicity is also found to alter the normalized distributions of the shock stand-off distance, heat flux, surface pressure and boundary layer thickness with the angle from the stagnation point. In general, increasing the conicity magnifies the slope of these distributions. Regarding the boundary layer transition, it is found that, if it occurs in a uniform free stream, it would also occur in a conical free stream, albeit with the transition point shifted upstream closer to the stagnation point due to the increase in the boundary layer edge tangential velocity. Overall, considering the relevant experimental uncertainties, corrections for free-stream conicity are generally recommended when larger test models are used.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van Albada, G.D., van Leer, B. & Roberts, W.W. Jr. 1997 A Comparative Study of Computational Methods in Cosmic Gas Dynamics, pp. 95–103. Springer.CrossRefGoogle Scholar
Anderson, J.D. 2019 Hypersonic and High-Temperature Gas Dynamics. AIAA.CrossRefGoogle Scholar
Billig, F.S. 1967 Shock-wave shapes around spherical-and cylindrical-nosed bodies. J. Spacecr. Rockets 4 (6), 822823.CrossRefGoogle Scholar
Candler, G., Barnhardt, M., Drayna, T., Nompelis, I., Peterson, D. & Subbareddy, P. 2007 Unstructured grid approaches for accurate aeroheating simulations. AIAA Paper 2007-3959.CrossRefGoogle Scholar
Candler, G.V. 2018 Nonequilibrium hypersonic flows and hypersonic nozzle flow modeling. Tech. Rep. STO-AVT-352-VKI. NATO STO Lecture Series: Flow Characterization and Modeling of Hypersonic Wind Tunnels.Google Scholar
Capriati, M., Cortesi, A., Magin, T.E. & Congedo, P.M. 2022 Stagnation point heat flux characterization under numerical error and boundary conditions uncertainty. Eur. J. Mech. (B/Fluids) 95, 221230.CrossRefGoogle Scholar
Chan, W., Jacobs, P.A., Smart, M.K., Grieve, S., Craddock, C.S. & Doherty, L.J. 2018 Aerodynamic design of nozzles with uniform outflow for hypervelocity ground-test facilities. J. Propul. Power 34 (6), 14671478.CrossRefGoogle Scholar
Chernyi, G.G. 1961 Introduction to Hypersonic Flow. Academic Press.Google Scholar
Chue, R.S.M., Bakos, R.J., Tsai, C.-Y. & Betti, A. 2003 Design of a shock-free expansion tunnel nozzle in hypulse. Shock Waves 13 (4), 261270.CrossRefGoogle Scholar
Collen, P.L., Satchell, M., Di Mare, L. & McGilvray, M. 2022 The influence of shock speed variation on radiation and thermochemistry experiments in shock tubes. J. Fluid Mech. 948, A51.CrossRefGoogle Scholar
Crittenden, P.E. & Balachandar, S. 2018 The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy. Shock Waves 28 (4), 653682.CrossRefGoogle Scholar
Deepak, N.R., Gai, S.L. & Neely, A.J. 2012 High-enthalpy flow over a rearward-facing step – a computational study. J. Fluid Mech. 695, 405438.CrossRefGoogle Scholar
Di Giovanni, A. & Stemmer, C. 2018 Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration. J. Fluid Mech. 856, 470503.CrossRefGoogle Scholar
Einfeldt, B. 1988 On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25 (2), 294318.CrossRefGoogle Scholar
Eitelberg, G., Krek, R. & Beck, W. 1996 Stagnation point heat transfer testing in non-equilibrium flow produced by the HEG. AIAA Paper 1996-4504.CrossRefGoogle Scholar
Eremeitsev, I.G. & Pilyugin, N.N. 1981 Convective heating of a blunt-nosed body in a nonuniform hypersonic gas stream. Fluid Dyn. 16 (4), 592597.CrossRefGoogle Scholar
Eremeitsev, I.G. & Pilyugin, N.N. 1984 Friction and heat transfer in laminar and turbulent boundary layers on axisymmetric bodies in nonuniform supersonic flows. Fluid Dyn. 19 (2), 227234.CrossRefGoogle Scholar
Ewenz Rocher, M., Hermann, T., McGilvray, M. & Gollan, R. 2021 Correlation for species concentration on a hypersonic stagnation point with mass injection. AIAA J. 60 (5), 112.Google Scholar
Fahy, E.J., Buttsworth, D.R., Gollan, R.J., Jacobs, P.A., Morgan, R.G. & James, C.M. 2021 Experimental and computational fluid dynamics study of hayabusa reentry peak heating. J. Spacecr. Rockets 58 (6), 18331846.CrossRefGoogle Scholar
Farokhi, S. 2021 Aircraft Propulsion, 3rd edn. John Wiley & Sons.Google Scholar
Fay, J.A. & Riddell, F.R. 1958 Theory of stagnation point heat transfer in dissociated air. J. Aerosp. Sci. 25 (2), 7385.CrossRefGoogle Scholar
Finch, P.M., Girard, J.J., Schwartz, T., Strand, C.L., Hanson, R.K., Yu, W.M., Austin, J.M. & Hornung, H.G. 2023 Measurements of T5 shock tunnel freestream temperature, velocity, and composition. AIAA J. 61 (4), 15551578.CrossRefGoogle Scholar
Gibbons, N.N., Damm, K.A., Jacobs, P.A. & Gollan, R.J. 2023 Eilmer: an open-source multi-physics hypersonic flow solver. Comput. Phys. Commun. 282, 108551.CrossRefGoogle Scholar
Gollan, R. & Jacobs, P.A. 2013 About the formulation, verification and validation of the hypersonic flow solver Eilmer. Intl J. Numer. Meth. Fluids 73 (1), 1957.CrossRefGoogle Scholar
Golovachev, Y.P. & Leont'eva, N.V. 1983 Viscous shock layer on the surface of a blunt body in a diverging supersonic flow. Fluid Dyn. 18 (3), 491494.CrossRefGoogle Scholar
Golovachov, Y.P. 1985 Similarity properties in the problem of flow from a supersonic source past a spherical bluntness. Intl J. Heat Mass Transfer 28 (6), 11651171.CrossRefGoogle Scholar
Goodwin, D.G., Moffat, H.K., Schoegl, I., Speth, R.L. & Weber, B.W. 2023 Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org, version 3.0.0.Google Scholar
Goulard, R. 1958 On catalytic recombination rates in hypersonic stagnation heat transfer. J. Jet Propul. 28 (11), 737745.CrossRefGoogle Scholar
Grossir, G., Dias, B., Chazot, O. & Magin, T.E. 2018 High temperature and thermal non-equilibrium effects on the determination of free-stream flow properties in hypersonic wind tunnels. Phys. Fluids 30 (12), 126012.CrossRefGoogle Scholar
Gu, S. & Olivier, H. 2020 Capabilities and limitations of existing hypersonic facilities. Prog. Aerosp. Sci. 113, 100607.CrossRefGoogle Scholar
Gu, S., Olivier, H., Wen, C., Hao, J. & Wang, Q. 2022 Characterization of reflected shock tunnel air conditions using a simple method. Phys. Fluids 34 (5), 056103.CrossRefGoogle Scholar
Gülhan, A., Esser, B., Koch, U., Fischer, M., Magens, E. & Hannemann, V. 2018 Characterization of high-enthalpy-flow environment for ablation material tests using advanced diagnostics. AIAA J. 56 (3), 10721084.CrossRefGoogle Scholar
Guo, J., Wang, X. & Li, S. 2024 Investigation of high enthalpy thermochemical nonequilibrium flow over spheres. Phys. Fluids 36 (1), 016122.Google Scholar
Gupta, R.N., Yos, J.M., Thompson, R.A. & Lee, K.-P. 1990 A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K. NASA Tech. Rep. RP-1232.Google Scholar
Hall, G.J. & Russo, A.L. 1966 Recent studies of nonequilibrium flows at the Cornell Aeronautical Laboratory. NASA Tech. Rep. CR-74170.Google Scholar
Hannemann, K., Martinez Schramm, J., Wagner, A. & Ponchio Camillo, G. 2018 The high enthalpy shock tunnel Göttingen of the German aerospace center (DLR). J. Large-Scale Res. Facil. 4 (A133), 114.Google Scholar
Hein, S., Theiss, A., Di Giovanni, A., Stemmer, C., Schilden, T., Schröder, W., Paredes, P., Choudhari, M.M., Li, F. & Reshotko, E. 2019 Numerical investigation of roughness effects on transition on spherical capsules. J. Spacecr. Rockets 56 (2), 388404.CrossRefGoogle ScholarPubMed
Hornung, H.G. 2010 Deriving features of reacting hypersonic flow from gradients at a curved shock. AIAA J. 48 (2), 287296.CrossRefGoogle Scholar
Hornung, H.G. 2019 Effect of conical free stream on shock stand-off distance. AIAA J. 57 (9), 41154116.CrossRefGoogle Scholar
Inger, G.R. 1963 Nonequilibrium stagnation point boundary layers with arbitrary surface catalycity. AIAA J. 1 (8), 17761784.CrossRefGoogle Scholar
Inouye, M. 1966 Numerical solutions for blunt axisymmetric bodies in a supersonic spherical source flow. NASA Tech. Rep. TN-D-3383.Google Scholar
Jacobs, P.A., Gollan, R.J., Denman, A.J., O'Flaherty, B.T., Potter, D.F., Petrie-Repar, P.J. & Johnston, I.A. 2010 Eilmer's theory book: basic models for gas dynamics and thermochemistry. Tech. Rep. Department of Mechanical Engineering Report 2010/09. The University of Queensland.Google Scholar
Jacobs, P.A., Gollan, R.J., Jahn, I. & Potter, D.F. 2015 The Eilmer3 code: User guide and example book. Report Mechanical Engineering Report 2015/07. The University of Queensland.Google Scholar
Jans, E., Lynch, K.P., Wagnild, R., Swain, W.E., Downing, C., Kearney, S.P., Wagner, J.L., Gilvey, J.J. & Goldenstein, C.S. 2024 Laser-based characterization of reflected shock tunnel freestream velocity and multi-species thermal nonequilibrium with comparison to modeling. AIAA Paper 2024-1753.CrossRefGoogle Scholar
Karl, S., Martinez Schramm, J. & Hannemann, K. 2003 High enthalpy cylinder flow in HEG: a basis for CFD validation. AIAA Paper 2003-4252.CrossRefGoogle Scholar
Kitamura, K., Shima, E., Nakamura, Y. & Roe, P.L. 2010 Evaluation of euler fluxes for hypersonic heating computations. AIAA J. 48 (4), 763776.CrossRefGoogle Scholar
Krishna, Y., Sheehe, S.L. & O'Byrne, S. 2018 Detection of spatial variation in hypersonic nozzle flow using diode laser spectroscopy. AIAA J. 56 (7), 29302935.CrossRefGoogle Scholar
van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys. 32 (1), 101136.CrossRefGoogle Scholar
Lees, L. 1956 Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds. J. Jet Propul. 26 (4), 259269.CrossRefGoogle Scholar
Lin, T.C., Reeves, B.L. & Siegelman, D. 1977 Blunt-body problem in nonuniform flowfields. AIAA J. 15 (8), 11301137.CrossRefGoogle Scholar
Lobb, R.K. 1964 Experimental Measurement of Shock Detachment Distance on Spheres Fired in Air at Hypervelocities, vol. 68, book section 26, pp. 519527. Elsevier.Google Scholar
Lunev, V.V. & Khramov, N.E. 1970 Flow in vicinity of blunt body stagnation point in diverging hypersonic stream. Fluid Dyn. 5 (3), 444447.CrossRefGoogle Scholar
Luo, K., Wang, Q., Li, J., Zhao, W. & Gu, S. 2023 A quasi-one-dimensional model for the stagnation streamline in hypersonic magnetohydrodynamic flows. Phys. Fluids 35 (3), 036101.CrossRefGoogle Scholar
Lynch, K.P., Grasser, T., Spillers, R., Downing, C., Daniel, K.A., Jans, E.R., Kearney, S., Morreale, B.J., Wagnild, R. & Wagner, J.L. 2023 Design and characterization of the Sandia free-piston reflected shock tunnel. Shock Waves, 116.Google Scholar
Mallinson, S.G., Gai, S.L. & Mudford, N.R.M. 1996 An experimental investigation of hypervelocity flow in a conical nozzle. Appl. Sci. Res. 57, 8193.CrossRefGoogle Scholar
Marineau, E. & Hornung, H.G. 2009 High-enthalpy nonequilibrium nozzle flow of air: experiments and computations. AIAA Paper 2009-4216.CrossRefGoogle Scholar
Mazaheri, A. & Kleb, B. 2007 Exploring hypersonic, unstructured-grid issues through structured grids. AIAA Paper 2007-4462.Google Scholar
Menees, G.P. 1972 Experimental study of wall boundary layer growth in the 10 deg half angle conical nozzle of a reflected shock tunnel. NASA Tech. Rep. TM-X-2647.Google Scholar
Miller, C.G. 1977 Expansion tunnel performance with and without an electromagneticallyopened tertiary diaphragm. AIAA J. 15 (7), 10451047.CrossRefGoogle Scholar
Millikan, R.C. & White, D.R. 1963 Systematics of vibrational relaxation. J. Chem. Phys. 39 (12), 32093213.CrossRefGoogle Scholar
Murzinov, I.N. 1966 Laminar boundary layer on a sphere in hypersonic flow of equilibrium dissociating air. Fluid Dyn. 1 (2), 131133.CrossRefGoogle Scholar
Nel, L., Skews, B. & Naidoo, K. 2015 Schlieren techniques for the visualization of an expansion fan/shock wave interaction. J. Vis. 18, 469479.CrossRefGoogle Scholar
Nishikawa, H. & Kitamura, K. 2008 Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers. J. Comput. Phys. 227 (4), 25602581.CrossRefGoogle Scholar
Olivier, H. 1995 Influence of the velocity gradient on the stagnation point heating in hypersonic flow. Shock Waves 5 (4), 205216.CrossRefGoogle Scholar
Oran, E.S. & Boris, J.P. 2001 Numerical Simulation of Reactive Flow, 2nd edn, vol. 2. Cambridge University Press.Google Scholar
Papadopoulos, P., Venkatapathy, E., Prabhu, D., Loomis, M.P. & Olynick, D. 1999 Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing. Appl. Math. Model. 23 (9), 705735.CrossRefGoogle Scholar
Paredes, P., Choudhari, M.M. & Li, F. 2017 Blunt-body paradox and transient growth on a hypersonic spherical forebody. Phys. Rev. Fluids 2 (5), 053903.CrossRefGoogle Scholar
Paredes, P., Choudhari, M.M. & Li, F. 2018 Blunt-body paradox and improved application of transient-growth framework. AIAA J. 56 (7), 26042614.CrossRefGoogle ScholarPubMed
Park, C. 1993 Review of chemical-kinetic problems of future NASA missions. I-Earth entries. J. Thermophys. Heat Transfer 7 (3), 385398.CrossRefGoogle Scholar
Park, G., Gai, S.L. & Neely, A.J. 2016 Base flow of circular cylinder at hypersonic speeds. AIAA J. 54 (2), 458468.CrossRefGoogle Scholar
Park, S.-H., Neeb, D., Plyushchev, G., Leyland, P. & Gülhan, A. 2021 A study on heat flux predictions for re-entry flight analysis. Acta Astronaut. 187, 271280.CrossRefGoogle Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2022 Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers. J. Fluid Mech. 941, A21.CrossRefGoogle Scholar
Petzold, L.R. 1986 Order results for implicit Runge–Kutta methods applied to differential/algebraic systems. SIAM. J. Numer. Anal. 23 (4), 837852.CrossRefGoogle Scholar
Ren, X., Yuan, J., He, B., Zhang, M. & Cai, G. 2019 Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime. J. Fluid Mech. 881, 585601.CrossRefGoogle Scholar
Roe, P.L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (2), 357372.CrossRefGoogle Scholar
Rose, P.H. & Stark, W.I. 1958 Stagnation point heat-transfer measurements in dissociated air. J. Aerosp. Sci. 25 (2), 8697.CrossRefGoogle Scholar
Schilden, T., Pogorelov, A., Herff, S. & Schröder, W. 2020 Microroughness-induced disturbances in supersonic blunt body flow. Phys. Rev. Fluids 5 (6), 063903.CrossRefGoogle Scholar
Schrijer, F.F.J. & Bannink, W.J. 2010 Description and flow assessment of the delft hypersonic Ludwieg tube. J. Spacecr. Rockets 47 (1), 125133.CrossRefGoogle Scholar
Shapiro, E.G. 1975 Similarity properties with the flow of supersonic uniform and nonuniform flows of gas around a sphere. Fluid Dyn. 10 (1), 6972.CrossRefGoogle Scholar
Shen, J., Shao, Z., Ji, F., Chen, X., Lu, H. & Ma, H. 2023 High enthalpy non-equilibrium expansion effects in turbulent flow of the conical nozzle. Aerospace 10 (5), 455.CrossRefGoogle Scholar
Sudhiesh Kumar, C. & Reddy, K.P.J. 2016 Experiments in hand-operated, hypersonic shock tunnel facility. Shock Waves 26 (6), 845849.CrossRefGoogle Scholar
Tanno, H. & Itoh, K. 2018 Flow characterization and current technical research issues of the HIEST hypersonic facility. Tech. Rep. STO-EN-AVT-325. NATO.Google Scholar
Van Dyke, M.D. 1958 The supersonic blunt-body problem-review and extension. J. Aerosp. Sci. 25 (8), 485496.CrossRefGoogle Scholar
Voronkin, V.G. & Geraskina, L.K. 1969 Nonequilibrium laminar boundary layer of dissociating air on axisymmetric bodies. Fluid Dyn. 4 (3), 99102.CrossRefGoogle Scholar
Wang, Z., Bao, L. & Tong, B. 2010 Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows. Phys. Fluids 22 (12), 126103.CrossRefGoogle Scholar
Wen, C.-Y. & Hornung, H.G. 1995 Non-equilibrium dissociating flow over spheres. J. Fluid Mech. 299, 389405.CrossRefGoogle Scholar
Yang, Y. & Park, G. 2019 Analysis of catalytic heat transfer for a multi-species gas mixture. Intl J. Heat Mass Transfer 137, 10881102.CrossRefGoogle Scholar
Zander, F., Gollan, R.J., Jacobs, P.A. & Morgan, R.G. 2014 Hypervelocity shock standoff on spheres in air. Shock Waves 24 (2), 171178.CrossRefGoogle Scholar
Zeitoun, D., Boccaccio, E., Druguet, M.C. & Imbert, M. 1994 Reactive and viscous flow in hypersonic nozzles. AIAA J. 32 (2), 333340.CrossRefGoogle Scholar
Zhao, W., Jiang, Z.L., Saito, T., Lin, J.M., Yu, H.R. & Takayama, K. 2005 Performance of a detonation driven shock tunnel. Shock Waves 14, 5359.CrossRefGoogle Scholar