Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T11:01:13.587Z Has data issue: false hasContentIssue false

The jet edge-tone feedback cycle; linear theory for the operating stages

Published online by Cambridge University Press:  26 April 2006

D. G. Crighton
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Abstract

The paper presents a linear analytical model to predict the frequency characteristics of the discrete oscillations of the jet-edge feedback cycle. The jet is idealized as having top-hat profile with vortex-sheet shear layers, and the nozzle from which it issues is represented by a parallel plate duct. At a stand-off distance h, a flat plate is inserted along the centreline of the jet, and a sinuous instability wave with real frequency w is assumed to be created in the vicinity of the nozzle and to propagate towards the splitter plate. Its interaction with the splitter plate produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing singularities at the nozzle lips. Vortex shedding is assumed to occur, alleviating the singularities and allowing a trailing-edge Kutta condition to be satisfied; this Kutta condition is claimed to be the phase-locking criterion. The shed vorticity develops into a sinuous spatial instability, and the cycle of events is repeated periodically.

Problems corresponding to the various physical processes described are analysed, for in viscid flow with vortex-sheet shear layers and aligned flat-plate boundaries, and solved in an appropriate asymptotic sense by Wiener-Hopf methods. Calculation of the phase changes occurring in the constituents of the cycle gives an equation for the frequency w in the Nth ‘stage’ as a function of jet width 2b, jet velocity U0, standoff distance h, and stage label N: \[ \omega b/U_0 = (b/h)^{\frac{3}{2}}[4\pi(N-{\textstyle\frac{3}{8}})]^{\frac{3}{2}}. \] The variations with b, U0, h and N are in excellent agreement with edge-tone experiments; the principal disagreement lies in the overall numerical factor $(4\pi)^{\frac{3}{2}}$ and explanations are given for this. Possible effects associated with the inclusion of displacement thickness fluctuations in the splitter-plate boundary layers, and the enforcement of a leading-edge Kutta condition, are also considered and shown not to affect the frequencies of the operating stages.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, W. K. & Powell, A. 1986 The development of contemporary views of flow-tone generation. In Recent Advances in Aeroacoustics (ed. A. Krothapalli & C. A. Smith), pp. 235235. Springer.
Brackenridge, J. B. 1960 J. Acoust. Soc. Am. 32, 12371242.
Brown, G. B. 1937a Proc. Phys. Soc. Lond. 49, 439507.
Brown, G. B. 1937b Proc. Phys. Soc. Lond. 49, 508521.
Churilov, S. M. & Shukhman, I. G. 1987 Proc. R. Soc. Lond. A 409, 351367.
Cohen, J. & Wygnanski, I. 1987a J. Fluid Mech. 176, 191219.
Cohen, J. & Wygnanski, I. 1987b J. Fluid Mech. 176, 221235.
Crighton, D. G. 1972 J. Fluid Mech. 56, 683694.
Crighton, D. G. 1981 J. Fluid Mech. 106, 261298.
Crighton, D. G. 1985 Ann. Rev. Fluid Mech. 17, 411445.
Crighton, D. G. & Leppington, F. G. 1974 J. Fluid Mech. 64, 393414.
Curle, N. 1953 Proc. R. Soc. Lond. A 216, 412424.
Drazin, P. G. & Howard, L. N. 1966 Adv. Appl. Mech. 9, 189.
Durbin, P. A. 1984 J. Fluid Mech. 145, 275285.
Fletcher, N. H. 1979 Ann. Rev. Fluid Mech. 11, 123146.
Gaster, M., Kit, E. & Wygnanski, I. J. 1985 J. Fluid Mech. 150, 2339.
Goldstein, M. E. 1981 J. Fluid Mech. 104, 217246.
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series and Products. Academic.
Hardisty, M. 1974 The effect of sound on vortex sheets. Ph.D. thesis, University of Dundee.
Holger, D. K., Wilson, T. A. & Beavers, G. S. 1977 J. Acoust. Soc. Am. 62, 11161128.
Hourigan, K., Welsh, M. C., Thompson, M. C. & Stokes, A. N. 1990 J. Fluids Struct. 4, 345370.
Howe, M. S. 1981a Proc. R. Soc. Lond. A 374, 543568.
Howe, M. S. 1981b J. Sound Vib. 75, 239250.
Howe, M. S. 1981c J. Sound Vib. 74, 311320.
Huerre, P. 1980 Phil. Trans. R. Soc. Lond. A 293, 643675.
Huerre, P. 1987 Proc. R. Soc. Lond. A 409, 369381.
Karamcheti, K., Bauer, A. B., Shields, W. L., Stegen, G. R. & Woolley, J. P. 1969 Some features of an edge-tone flow field. NASA SP-207, pp. 304304.Google Scholar
Kranzer, H. C. & Radlow, J. 1962 J. Math. Anal. Applics. 4, 240256.
Kranzer, H. C. & Radlow, J. 1965 J. Math. Mech. 14, 4159.
Krothapalli, A. & Horne, C. 1984 Recent observations on the structure of an edge-tone flow field. AIAA 84–2296.Google Scholar
MoCartney, M. S. & Greber, I. 1973 Case Western Reserve University FTAS TR-73-87.
Möhring, W. F. 1978 J. Fluid Mech. 85, 685691.
Morgan, J. D. 1974 Q.J. Mech. Appl. Maths 27, 465487.
Noble, B. 1958 Methods Based on the Wiener—Hopf Technique. Pergamon.
Nyborg, W. L. 1954 J. Acoust. Soc. Am. 26, 174182.
Orszag, S. A. & Crow, S. C. 1979 Stud. Appl. Maths 49, 167181.
Powell, A. 1961 J. Acoust. Soc. Am. 33, 395409.
Rockwell, D. & Naudascher, E. 1979 Ann. Rev. Fluid Mech. 11, 6794.
Staubli, T. & Rockwell, D. 1987 J. Fluid Mech. 176, 135167.
Stoneman, S. A. T., Hourigan, K., Stokes, A. N. & Welch, M. C. 1988 J. Fluid Mech. 192, 455484.
Strange, P. J. R. & Crighton, D. G. 1983 J. Fluid Mech. 134, 231245.