Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-14T03:03:09.688Z Has data issue: false hasContentIssue false

Laminar boundary-layer reattachment in supersonic flow. Part 2. Numerical solution

Published online by Cambridge University Press:  19 April 2006

P. G. Daniels
Affiliation:
Department of Mathematics, The City University, St John Street, London EC1V 4PB

Abstract

A possible model of the flow in the neighbourhood of a point of reattachment of a supersonic laminar boundary layer consists of a three-tiered ‘triple-deck’ structure in which the basic problem reduces to that of solving the incompressible boundary-layer equations in the lower deck, a region of lateral and streamwise extent $O(R^{-\frac{5}{8}})$ and $O(R^{-\frac{3}{8}})$, where R is a representative Reynolds number of the flow (Daniels 1979). The present paper describes a scheme for the numerical solution of this problem which provides evidence in support of the proposed model and quantitative values for the O(R−¼) correction to the base pressure in the flow upstream and the O(R−⅝) correction to the position of reattachment relative to the point of intersection of the incoming shear layer and the wall. An important feature of the scheme is that it copes successfully with a flow which contains substantial reverse velocities.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borggraf, O. R. 1970 U.S. Air Force Aerospace. Res. Lab. Rep. ARL 70–0275.
Burggraf, O. R., Jensen, R. & Rizzetta, D. P. 1975 Proc. 4th Int. Conf. Num. Meth. in Fluid Mech., Boulder 1974, Lecture notes in Physics, vol. 35, p. 218. Springer.
Carter, J. E. 1972 N.A.S.A. Tech. Rep. R-385.
Chapman, D. R., Kuehn, D. M. & Larson, H. K. 1958 N.A.C.A. Rep. no. 1356.
Daniels, P. G. 1974 Q. J. Mech. Appl. Math. 27, 175.
Daniels, P. G. 1979 J. Fluid Mech. 90, 289.
Flügge-Lotz, I. & Reyhner, T. A. 1968 Int. J. Non-linear Mech. 3, 173.
Hama, F. R. 1968 A.I.A.A. J. 6, 212.
Jobe, C. E. & Burggraf, O. R. 1974 Proc. Roy. Soc. A 340, 91.
Klemp, J. B. & Acrivos, A. 1972 J. Fluid Mech. 53, 177.
Messiter, A. F., Hough, G. R. & Feo, A. 1973 J. Fluid Mech. 60, 605.
Rom, J. 1966 J. Spacecraft & Rockets 3, 1504.
Smith, F. T. 1974 J.I.M.A. 13, 127.
Smith, F. T. 1977 Proc. Roy. Soc. A 356, 443.
Smith, F. T. 1979 J. Fluid Mech. 90, 725.
Stewartson, K. 1974 Adv. Appl. Mech. 14, 145.
Stewartson, K. & Williams, P. G. 1969 Proc. Roy. Soc. A 312, 181.
Williams, P. G. 1975 Proc. 4th Int. Conf. Num. Meth. in Fluid Mech. Boulder 1974, Lecture notes in Physics, vol. 35, p. 445. Springer.