Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:42:28.316Z Has data issue: false hasContentIssue false

Local analysis of absolute instability in plasma jets

Published online by Cambridge University Press:  05 October 2020

S. Demange*
Affiliation:
Department of Aeronautics and Aerospace, von Karman Institute, Rhode-Saint-Genese1640, Belgium
O. Chazot
Affiliation:
Department of Aeronautics and Aerospace, von Karman Institute, Rhode-Saint-Genese1640, Belgium
F. Pinna
Affiliation:
Department of Aeronautics and Aerospace, von Karman Institute, Rhode-Saint-Genese1640, Belgium
*
Email address for correspondence: simon.demange@vki.ac.be

Abstract

Stability features of two-stream coaxial plasma jet simulations are investigated using numerical solutions to the spatio-temporal one-dimensional linear stability theory problem. The base states obtained from magneto-hydrodynamic simulations consider the flow as a mixture of gases in local thermodynamic equilibrium (LTE) while stability computations are performed assuming both a calorically perfect gas (CPG) model and LTE. Comparisons with solutions considering a simple CPG model show the non-negligible impact of the LTE on the stability attributes of the plasma jet. For all cases studied, a large region of absolute instability is found for the axisymmetric mode, starting at the jet inlet. The streamwise evolution of the absolute growth rate is found to depend both on the baroclinic torque and the displacement of the maximum shear toward low velocity regions of the jet, combining effects described in the literature. The jet is controlled by means of electric power and static pressure at constant mass flow. The former affects mainly the absolute growth rate through changes of the core-to-bypass stream velocity ratio, while the latter influences mostly the absolute frequency. Finally, the full impulse response reveals a competition mechanism between the absolute mixed modes dominating at low group velocities, and convective shear layer modes at higher group velocities, restricted to the first half of the chamber.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balestra, G., Gloor, M. & Kleiser, L. 2015 Absolute and convective instabilities of heated coaxial jet flow. Phys. Fluids 27 (5), 054101.CrossRefGoogle Scholar
Bayliss, A. & Turkel, E. 1992 Mappings and accuracy for Chebyshev pseudo-spectral approximations. J. Comput. Phys. 101 (2), 349359.CrossRefGoogle Scholar
Bers, A. 1984 Space-Time Evolution of Plasma Instabilities - Absolute and Convective. Basic Plasma Physics, p. 451.Google Scholar
Bottin, B., Carbonaro, M., Chazot, O., Degrez, G., Abeele, D. V., Barbante, P., Paris, S., Van Der Haegen, V., Magin, T. & Playez, M. 2004 A decade of aerothermal plasma research at the von Karman institute. Contrib. Plasm. Phys. 44 (5–6), 472477.CrossRefGoogle Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT.CrossRefGoogle Scholar
Chomaz, J. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Chomaz, J., Huerre, P. & Redekopp, L. 1991 A frequency selection criterion in spatially developing flows. Stud. Appl. Maths 84, 119144.CrossRefGoogle Scholar
Cipullo, A., Helber, B., Panerai, F., Zeni, F. & Chazot, O. 2014 Investigation of freestream plasma flow produced by inductively coupled plasma wind tunnel. J. Thermophys. Heat Transfer 28 (3), 381393.CrossRefGoogle Scholar
Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A. 2017 Global instability of low-density jets. J. Fluid Mech. 820, 187207.CrossRefGoogle Scholar
Coenen, W. & Sevilla, A. 2012 The structure of the absolutely unstable regions in the near field of low-density jets. J. Fluid Mech. 713, 123149.CrossRefGoogle Scholar
Coenen, W., Sevilla, A. & Sanchez, A. L. 2008 Absolute instability of light jets emerging from circular injector tubes. Phys. Fluids 20.CrossRefGoogle Scholar
Colombo, V., Ghedini, E. & Sanibondi, P. 2010 A three-dimensional investigation of the effects of excitation frequency and sheath gas mixing in an atmospheric-pressure inductively coupled plasma system. J. Phys. D: Appl. Phys. 43, 105202.CrossRefGoogle Scholar
Esposito, A. 2016 Development and analysis of mapping and domain decomposition techniques for compressible shear flows stability computations. Tech. Rep. 2016-16. von Karman Institute.Google Scholar
Groot, K. J., Miró Miró, F., Beyak, E. S., Moyes, A. J., Pinna, F. & Reed, H. L. 2018 DEKAF: spectral multi-regime basic-state solver for boundary layer stability. 2018 Fluid Dynamics, Conference, AIAA AVIATION Forum, (AIAA 2018-3380).CrossRefGoogle Scholar
Honzatko, R. 2006 Implementation of a finite-volume inductively coupled plasma model into the object-oriented solver coolfluid. Tech. Rep. 2006-16. von Karman Institute Project Report.Google Scholar
Huerre, P. 2000 Open shear flow instabilities. In Perspectives in Fluid Dynamics (ed. G. K. Batchelor, H. K. Moffatt & M. G. Worster), pp. 159–229. Cambridge University Press.Google Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Juniper, M. J. 2006 The effect of confinement on the stability of two-dimensional shear flows. J. Fluid Mech. 565, 171195.CrossRefGoogle Scholar
Juniper, M. J. 2008 The effect of confinement on the stability of non-swirling round jet/wake flows. J. Fluid Mech. 605, 227252.CrossRefGoogle Scholar
Khorrami, M. R., Malik, M. R. & Ash, R. L. 1989 Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81 (1), 206229.CrossRefGoogle Scholar
Lani, A. 2008 An object oriented and high performance platform for aerothermodynamics simulation. PhD thesis, Université Libre de Bruxelles/von Karman Institute.Google Scholar
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19 (2), 024102.CrossRefGoogle Scholar
Lesshafft, L., Huerre, P. & Sagaut, P. 2007 Frequency selection in globally unstable round jets. Phys. Fluids 19, 054108.CrossRefGoogle Scholar
Lesshafft, L., Huerre, P., Sagaut, P. & Terracol, M. 2006 Nonlinear global modes in hot jets. J. Fluid Mech. 554, 393409.CrossRefGoogle Scholar
Lesshafft, L. & Marquet, O. 2010 Optimal velocity and density profiles for the onset of absolute instability in jets. J. Fluid Mech. 662, 398408.CrossRefGoogle Scholar
Magin, T. E. & Degrez, G. 2004 Transport algorithms for partially ionized and unmagnetized plasmas. J. Comput. Phys. 198 (2), 424449.CrossRefGoogle Scholar
Malik, M. R. & Anderson, E. C. 1991 Real gas effects on hypersonic boundary-layer stability. Phys. Fluids 3, 803821.CrossRefGoogle Scholar
Marieua, V., Reynierb, P., Marraffab, L., Vennemannb, D., De Filippisc, F. & Caristiac, S. 2007 Evaluation of SCIROCCO plasma wind-tunnel capabilities for entry simulations in CO2 atmospheres. Acta Astronaut. 61, 604616.CrossRefGoogle Scholar
McBride, B. J., Gordon, S. & Reno, M. A. 1993 Coefficients for calculating thermodynamic and transport properties of individual species. NASA Tech. Rep. Technical Memorandum TM-4513.Google Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Miró Miró, F., Beyak, E. S., Mullen, D., Pinna, F. & Reed, H. L. 2018 Ionization and dissociation effects on hypersonic boundary-layer stability. In 31st Congress of the International Council of the Aeronautical Sciences.CrossRefGoogle Scholar
Miró Miró, F., Beyak, E. S., Pinna, F. & Reed, H. L. 2019 High-enthalpy models for boundary-layer stability and transition. Phys. Fluids 31 (4), 044101.CrossRefGoogle Scholar
Monkewitz, P., Bechert, D., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.CrossRefGoogle Scholar
Monkewitz, P. & Sohn, K. 1988 Absolute instability in hot jets. AIAA J. 26 (8), 911916.CrossRefGoogle Scholar
Morkovin, M. V., Reshotko, E. & Herbert, T. 1994 Transition in open flow systems – A reassessment. Bull. Am. Phys. Soc. 39.Google Scholar
Nichols, J. W., Schmid, P. & Riley, J. J. 2007 Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 582, 341376.CrossRefGoogle Scholar
Pinna, F. 2013 VESTA toolkit: a software to compute transition and stability of boundary layers. In 43rd Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Pinna, F. & Groot, K. 2014 Automatic derivation of stability equations in arbitrary coordinates and for different flow regimes. In 44th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Powell, M. J. D. 1968 A fortran subroutine for solving systems of nonlinear algebraic equations. Tech. Rep. AERE-R-5947. Atomic Energy Research Establishment.Google Scholar
Prokop, V. 2007 Development of a local thermodynamic equilibrium model of inductively coupled plasmas. Tech. Rep. 2007-23. von Karman Institute Project Report.Google Scholar
Rees, S. J. & Juniper, M. J. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309336.CrossRefGoogle Scholar
Sanchez-Sanz, M., Rosales, M. & Sanchez, A. L. 2010 The hydrogen laminar jet. Intl J. Hydrogen Energ. 547, 39193927.CrossRefGoogle Scholar
Sanchez-Sanz, M., Sanchez, A. L. & Linan, A. 2006 Fronts in high-temperature laminar gas jets. J. Fluid Mech. 547, 257266.CrossRefGoogle Scholar
Scoggins, J. B. & Magin, T. 2014 Development of Mutation++: MUlticomponent Thermodynamics And Transport properties for IONized gases library in C++. In 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA AVIATION Forum, (AIAA 2014-2966).CrossRefGoogle Scholar
Shigeta, M. 2013 Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance: a numerical study. J. Phys. D: Appl. Phys. 46.CrossRefGoogle Scholar
Trefethen, L. N. 2000 Spectral Methods in MATLAB. SIAM.CrossRefGoogle Scholar
Trelles, J. P. 2013 Computational study of flow dynamics from a dc arc plasma jet. J. Phys. D: Appl. Phys. 46.CrossRefGoogle Scholar
Zanus, L., Miró Miró, F. & Pinna, F. 2019 Parabolized stability analysis of chemically reacting boundary-layer flows in equilibrium conditions. Proc. Inst. Mech. Engrs G 234, 7995.CrossRefGoogle Scholar
Zhang, W., Lani, A. & Panesi, M. 2016 Analysis of non-equilibrium phenomena in inductively coupled plasma generators. Phys. Plasmas 23 (7), 073512.CrossRefGoogle Scholar