Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T21:54:47.094Z Has data issue: false hasContentIssue false

A macromolecule transport model for the arterial wall and endothelium based on the ultrastructural specialization observed in electron microscopic studies

Published online by Cambridge University Press:  29 March 2006

Sheldon Weinbaum
Affiliation:
Department of Mechanical Engineering, The City College of The City University of New York, New York 10031
Colin G. Caro
Affiliation:
Physiological Flow Studies Unit, Department of Aeronautics, Imperial College, London

Abstract

A composite hydrodynamic-diffusion model of the arterial wall is presented to describe the vesicular transport of relatively inert macromolecules across the inner endothelial lining of the larger arteries of humans and animals and their subsequent diffusion in the underlying tissue of the intima and media. This model is motivated by the highly specialized ultrastructure of the arterial wall observed in electron microscopic studies and the recent experimental measurements of the time-dependent uptake of labelled macromolecules in animal arteries under carefully controlled in vitro conditions. The proposed dynamic model for the vesicular transport across the endothelial cell layer considers the constrained Brownian diffusion of 700 Å vesicles subject to long-range hydrodynamic and short-range London-van der Waals force interactions with the plasmalemma membranes of the endothelial cell. Approximate solutions are developed for the motion and the steady-state vesicle density distribution near the plasmalemma and in the interior of the cell using boundary-layer-like methods. The model for the vesicular transport just described appears as a novel boundary condition in the basic diffusion model for the underlying tissue. The latter is treated as a two-phase medium comprised of an interstitial fluid continuum with a uniformly dispersed smooth muscle phase as first proposed by Hills (1968). This model for the underlying tissue assumes that the smooth muscle cells contribute insignificantly to the macromolecule diffusion across the arterial wall but act as the principal storage reservoir for the macromolecules for large diffusion times because of their large volume fraction. The dimensionless parameters that arise in the theoretical model are determined by comparing the solutions for the time-dependent total wall uptake with Fry's (1973) experimental data for canine carotid artery.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. W. M., Morgan, R. S. & Bayliss, O. B. 1970 Atheroscl. 11, 119.
Bell, F. P., Adamson, I. L. & Schwartz, C. J. 1974 Exp. Mol. Path. 20, 57.
Bell, F. P., Gallus, A. S. & Schwartz, C. J. 1974 Exp. Mol. Path. 20, 281.
Bruns, R. R. & Palade, G. E. 1968 J. Cell Biol. 37, 277.
Caro, C. G. 1973 Atherogenesis: Initiating Factors. Ciba Found. Symp. no. 12. Assoc. Sci. Publ.
Caro, C. G. 1974 Cardiovas. Res. 8, 194.
Caro, C. G., FITZ-GERALD, J. M. & Schroter, R. C. 1971 Proc. Roy. Soc. B 177, 109.
Caro, C. G., Lewis, C. & Weinbaum, S. 1974 Proc. Physiol. Soc. C 20, 77.
Caro, C. G. & Nerem, R. M. 1973 Circul. Res. 32, 187.
Caro, C. G., Siflinger, A. & Parker, K. 1975 Cardiovas. Res. (in the Press).
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids, 2nd edn. Oxford: Clarendon Press.
Casley-Smith, J. R. 1969 J. Microscopy, 90, 15.
Casley-Smith, J. R. & Chin, J. C. 1971 J. Microscopy, 90, 167.
Cox, R. G. & Brenner, H. 1968 Chem. Engng Sci. 22, 1753.
Fry, D. L. 1968 Circul. Res. 22, 165.
Fry, D. L. 1972 Circul. Res. 24, 93.
Fry, D. L. 1973 Atherogenesis: Initiating Factors. Ciba Found. Symp. no. 12. Assoc. Sci. Publ.
Green, H. S. & CASLEY-SMITH, J. R. 1972 J. Theor. Biol. 35, 103.
Hills, B. A. 1968 Bull. Math. Biophys. 30, 47.
Hills, B. A. 1970 Bull. Math. Biophys. 32, 219.
Irani, A. R. & Adamson, A. W. 1958 J. Phys. Chem. 62, 1517.
Israelachvili, J. N. & Tabor, D. 1972 Prog. Surface Membrane Sci. 7, 1.
Jennings, M. A. & Florey, LORD 1967 Proc. Roy. Soc. B 167, 39.
Karnovsky, M. J. 1967 J. Cell Biol. 37, 213.
Lifshitz, E. M. 1956 Sov. Phys. Exp. Theor. Phys. 2, 73.
Palade, G. E. 1960 Anat. Record, 136, 254.
Shea, S. M. & Bossert, W. H. 1973 Microvasc. Res. 6, 305.
Shea, S. M., Karnovsky, M. J. & Bossert, W. H. 1969 J. Theor. Biol. 24, 30.
Simionescu, N., Simionescu, M. & Palade, G. E. 1973 J. Cell Biol. 57, 434.
Somer, J. B. & Schwartz, C. J. 1971 Atherosclerosis, 13, 293.
Taylor, E. W. 1965 Proc. 4th Int. Cong. Rheol., part 4. Symp. Biorheol. Interscience.
Tomlin, S. G. 1969 ‘Biochem. Biophys. Acta, 183, 559.