Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T22:07:58.524Z Has data issue: false hasContentIssue false

Nonlinear evolution and low-frequency acoustic radiation of ring-mode coherent structures on subsonic turbulent circular jets

Published online by Cambridge University Press:  12 April 2022

Zhongyu Zhang
Affiliation:
Laboratory of High-Speed Aerodynamics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
Xuesong Wu*
Affiliation:
School of Mechanical Engineering, Nantong University, Nantong 226019, PR China Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
*
Email address for correspondence: x.wu@imperial.ac.uk

Abstract

By adapting the triple decomposition of an instantaneous turbulent flow into a time-averaged mean field, large-scale coherent motion and fine-scale random fluctuations, and treating the coherent motion as instability modes on the mean flow, a mathematical theory is developed to describe the nonlinear spatial–temporal modulation and acoustic radiation of a coherent structure (CS) on a circular jet in the form of a wavepacket consisting of an axisymmetric (ring) mode and its sideband components. The effect of fine-scale turbulence on the CS is characterised via a gradient closure model, and the non-parallelism due to the axial variation and radial velocity of the mean flow is taken into account. By employing the matched asymptotic expansion and multi-scale techniques, a strongly nonlinear system is derived, which governs the envelope of the CS and its vorticity and temperature in the critical layer. Numerical solutions to the evolution system show that the theory captures the nonlinear amplitude attenuation and vorticity roll-up as observed in experiments. The large-distance asymptotic properties of the CS allow us to describe and predict its acoustic radiation on the basis of first principles. The CS is trapped within the jet, but its self-interaction generates a temporally and axially modulated mean-flow distortion, which acts as the emitter to radiate low-frequency sound waves, with the Reynolds stresses driving this mean-flow distortion being identified unambiguously to be the physical source in the present context. An equivalent source in the Lighthill type of acoustic analogy is also identified. For the present ring-mode CS in the fully developed region of a circular jet, the equivalent source can be determined before the acoustic field is, and the intensity of the radiated sound waves is found to be $O(\epsilon ^3)$, where $\epsilon$ measures the magnitude of the CS. The directivity and spectrum of the acoustic far field are calculated for representative parameters, and the predicted features resemble experimental measurements.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afsar, M.Z., Sescu, A. & Leib, S.J. 2019 a Modelling and prediction of the peak-radiated sound in subsonic axisymmetric air jets using acoustic analogy-based asymptotic analysis. Phil. Trans. R. Soc. Lond. A 377 (2159), 20190073.Google ScholarPubMed
Afsar, M.Z., Sescu, A. & Sassanis, V. 2019 b Effect of non-parallel mean flow on the acoustic spectrum of heated supersonic jets: explanation of ‘jet quietening’. Phys. Fluids 31 (10), 105107.CrossRefGoogle Scholar
Baqui, Y.B., Agarwal, A., Cavalieri, A.V.G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.CrossRefGoogle Scholar
Beavers, G.S. & Wilson, T.A. 1970 Vortex growth in jets. J. Fluid Mech. 44, 97112.CrossRefGoogle Scholar
Bechert, D. & Pfizenmaier, E. 1975 On the amplification of broad band jet noise by a pure tone excitation. J. Sound Vib. 43 (3), 581587.CrossRefGoogle Scholar
Bechert, D.W. & Pfizenmaier, E. 1977 Amplification of jet noise by a higher-mode acoustical excitation. AIAA J. 15 (9), 12681271.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2007 An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets. J. Fluid Mech. 583, 7197.CrossRefGoogle Scholar
Bogey, C., Bailly, C. & Juvé, D. 2003 Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation. Theor. Comput. Fluid Dyn. 16 (4), 273297.CrossRefGoogle Scholar
Bogey, C. & Sabatini, R. 2019 Effects of nozzle-exit boundary-layer profile on the initial shear-layer instability, flow field and noise of subsonic jets. J. Fluid Mech. 876, 288325.CrossRefGoogle Scholar
Brès, G.A., Jaunet, V., Le Rallic, M., Jordan, P., Towne, A., Schmidt, O., Colonius, T., Cavalieri, A.V. & Lele, S.K. 2016 Large eddy simulation for jet noise: azimuthal decomposition and intermittency of the radiated sound. In 22nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-3050.Google Scholar
Brès, G.A., Jordan, P., Jaunet, V., Rallic, M.L., Cavalieri, A.V.G., Towne, A., Lele, S.K., Colonius, T. & Schmidt, O.T. 2018 Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83124.CrossRefGoogle Scholar
Bridges, J. & Hussain, F. 1992 Direct evaluation of aeroacoustic theory in a jet. J. Fluid Mech. 240, 469501.CrossRefGoogle Scholar
Bridges, J.E. & Hussain, A.K.M.F. 1987 Roles of initial condition and vortex pairing in jet noise. J. Sound Vib. 117 (2), 289311.CrossRefGoogle Scholar
Cavalieri, A.V.G. & Agarwal, A. 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.CrossRefGoogle Scholar
Cavalieri, A.V.G., Daviller, G., Comte, P., Jordan, P., Tadmor, G. & Gervais, Y. 2011 a Using large eddy simulation to explore sound-source mechanisms in jets. J. Sound Vib. 330 (17), 40984113.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 b Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18–19), 44744492.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Gervais, Y., Wei, M. & Freund, J.B. 2010 Intermittent sound generation and its control in a free-shear flow. Phys. Fluids 22 (11), 115113.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P. & Lesshafft, L. 2019 Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev. 71 (2), 020802.CrossRefGoogle Scholar
Cavalieri, A.V.G., Rodriguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.CrossRefGoogle Scholar
Cheung, L.C. & Lele, S.K. 2009 Linear and nonlinear processes in two-dimensional mixing layer dynamics and sound radiation. J. Fluid Mech. 625, 321351.CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.CrossRefGoogle Scholar
Corke, T.C., Shakib, F. & Nagib, H.M. 1991 Mode selection and resonant phase locking in unstable axisymmetric jets. J. Fluid Mech. 223, 253311.CrossRefGoogle Scholar
Crawley, M., Gefen, L., Kuo, C.W., Samimy, M. & Camussi, R. 2018 Vortex dynamics and sound emission in excited high-speed jets. J. Fluid Mech. 839, 313347.CrossRefGoogle Scholar
Crighton, D.G. & Huerre, P. 1990 Shear-layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.CrossRefGoogle Scholar
Crow, S.C. 1970 Aerodynamic sound emission as a singular perturbation problem. Stud. Appl. Maths 49 (1), 2146.CrossRefGoogle Scholar
Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.CrossRefGoogle Scholar
Ffowcs Williams, J.E. 1969 Hydrodynamic noise. Annu. Rev. Fluid Mech. 1 (1), 197222.CrossRefGoogle Scholar
Ffowcs Williams, J.E. 1977 Aeroacoustics. Annu. Rev. Fluid Mech. 9 (1), 447468.CrossRefGoogle Scholar
Ffowcs Williams, J.E. & Kempton, A.J. 1978 The noise from the large-scale structure of a jet. J. Fluid Mech. 84, 673694.CrossRefGoogle Scholar
Fontaine, R.A., Elliott, G.S., Austin, J.M. & Freund, J.B. 2015 Very near-nozzle shear-layer turbulence and jet noise. J. Fluid Mech. 770, 2751.CrossRefGoogle Scholar
Freund, J.B. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.CrossRefGoogle Scholar
Fu, Z., Agarwal, A., Cavalieri, A.V.G., Jordan, P. & Brès, G.A. 2017 Turbulent jet noise in the absence of coherent structures. Phys. Rev. Fluids 2 (6), 064601.CrossRefGoogle Scholar
Garnaud, X., Lesshafft, L., Schmid, P.J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.CrossRefGoogle Scholar
Gaster, M., Kit, E. & Wygnanski, I. 1985 Large-scale structures in a forced turbulent mixing layer. J. Fluid Mech. 150, 2339.CrossRefGoogle Scholar
Goldstein, M.E. 1984 Aeroacoustics of turbulent shear flows. Annu. Rev. Fluid Mech. 16 (1), 263285.CrossRefGoogle Scholar
Goldstein, M.E. 2001 An exact form of Lilley's equation with a velocity quadrupole/temperature dipole source term. J. Fluid Mech. 443, 231236.CrossRefGoogle Scholar
Goldstein, M.E. 2003 A generalized acoustic analogy. J. Fluid Mech. 488, 315333.CrossRefGoogle Scholar
Goldstein, M.E. 2005 On identifying the true sources of aerodynamic sound. J. Fluid Mech. 526, 337347.CrossRefGoogle Scholar
Goldstein, M.E. 2011 Recent developments in the application of the generalized acoustic analogy to jet noise prediction. Intl J. Aeroacoust. 10 (2–3), 89115.CrossRefGoogle Scholar
Goldstein, M.E. & Leib, S.J. 2005 The role of instability waves in predicting jet noise. J. Fluid Mech. 525, 3772.CrossRefGoogle Scholar
Goldstein, M.E. & Leib, S.J. 2008 The aeroacoustics of slowly diverging supersonic jets. J. Fluid Mech. 600, 291337.CrossRefGoogle Scholar
Goldstein, M.E., Sescu, A. & Afsar, M.Z. 2012 Effect of non-parallel mean flow on the Green's function for predicting the low-frequency sound from turbulent air jets. J. Fluid Mech. 695, 199234.CrossRefGoogle Scholar
Grinstein, F.F., Oran, E.S. & Boris, J.P. 1987 Direct numerical simulation of axisymmetric jets. AIAA J. 25 (1), 9298.CrossRefGoogle Scholar
Haberman, R. 1972 Critical layers in parallel shear flows. Stud. Appl. Maths 51, 139161.CrossRefGoogle Scholar
Harper-Bourne, M. & Fisher, M.J. 1974 The noise from shock waves in supersonic jets. In Noise Mechanisms, AGARD-CP-131, pp. 11.1–11.13.Google Scholar
Hileman, J.I., Thurow, B.S., Caraballo, E.J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Hasan, M.A.Z. 1985 Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150, 159168.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Reynolds, W.C. 1972 The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results. J. Fluid Mech. 54, 241261.CrossRefGoogle Scholar
Jeun, J., Nichols, J.W. & Jovanović, M.R. 2016 Input–output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.CrossRefGoogle Scholar
Juvé, D., Sunyach, M. & Comte-Bellot, G. 1980 Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71 (3), 319332.CrossRefGoogle Scholar
Kearney-Fischer, M., Sinha, A. & Samimy, M. 2013 Intermittent nature of subsonic jet noise. AIAA J. 51 (5), 11421155.CrossRefGoogle Scholar
Kibens, V. 1980 Discrete noise spectrum generated by acoustically excited jet. AIAA J. 18 (4), 434441.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Lilley, G.M. 1974 On the noise from jets. In Noise Mechanisms, AGARD-CP-131, pp. 13.1–13.12.Google Scholar
Liu, J.T.C. 1974 Developing large-scale wavelike eddies and the near jet noise field. J. Fluid Mech. 62, 437464.CrossRefGoogle Scholar
Liu, J.T.C. 1989 Coherent structures in transitional and turbulent free shear flows. Annu. Rev. Fluid Mech. 21, 285315.CrossRefGoogle Scholar
Lorteau, M., Cléro, F. & Vuillot, F. 2015 Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution. Phys. Fluids 27 (7), 075108.CrossRefGoogle Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521544.CrossRefGoogle Scholar
Michalke, A. & Freymuth, P. 1966 The instability and the formation of vortices in a free boundary layer. In AGARD Conference Proc. on Separated Flows, Part 2 (ed. J.J. Ginoux & H. Eubelhac), pp. 575595.Google Scholar
Michalke, A. & Fuchs, H.V. 1975 On turbulence and noise of an axisymmetric shear flow. J. Fluid Mech. 70, 179205.CrossRefGoogle Scholar
Miksad, R.W. 1973 Experiments on nonlinear interactions in the transition of a free shear layer. J. Fluid Mech. 59, 121.CrossRefGoogle Scholar
Mollo-Christensen, E., Kolpin, M.A. & Martuccelli, J.R. 1964 Experiments on jet flows and jet noise far-field spectra and directivity patterns. J. Fluid Mech. 18, 285301.CrossRefGoogle Scholar
Moore, C.J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80, 321367.CrossRefGoogle Scholar
Narayanan, S., Barber, T.J. & Polak, D.R. 2002 High subsonic jet experiments: turbulence and noise generation studies. AIAA J. 40 (3), 430437.CrossRefGoogle Scholar
Nicholas, J.W. & Lele, S.K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225241.CrossRefGoogle Scholar
Paschereit, C.O., Oster, D., Long, T.A., Fiedler, H.E. & Wygnanski, I. 1992 Flow visualization of interactions among large coherent structures in an axisymmetric jet. Exp. Fluids 12 (3), 189199.CrossRefGoogle Scholar
Paschereit, C.O., Wygnanski, I. & Fiedler, H.E. 1995 Experimental investigation of subharmonic resonance in an axisymmetric jet (referred to as ‘PWF’). J. Fluid Mech. 283, 365407.CrossRefGoogle Scholar
Peterson, L.F. & Hama, F.R. 1978 Instability and transition of the axisymmetric wake of a slender body of revolution. J. Fluid Mech. 88 (1), 7196.CrossRefGoogle Scholar
Phillips, O.M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9, 128.CrossRefGoogle Scholar
Raman, G. 1999 Supersonic jet screech: half-century from Powell to the present. J. Sound Vib. 225 (3), 543571.CrossRefGoogle Scholar
Raman, G., Rice, E.J. & Reshotko, E. 1994 Mode spectra of natural disturbances in a circular jet and the effect of acoustic forcing. Exp. Fluids 17 (6), 415426.CrossRefGoogle Scholar
Ronneberger, D. & Ackermann, U. 1979 Experiments on sound radiation due to non-linear interaction of instability waves in a turbulent jet. J. Sound Vib. 62 (1), 121129.CrossRefGoogle Scholar
Roshko, A. 1976 Structure of turbulent shear flows: a new look. AIAA J. 14 (10), 13491357.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.CrossRefGoogle Scholar
Sandham, N.D. & Salgado, A.M. 2008 Nonlinear interaction model of subsonic jet noise. Phil. Trans. R. Soc. Lond. A 366 (1876), 27452760.Google ScholarPubMed
Schmidt, O.T., Towne, A., Colonius, T., Cavalieri, A.V.G., Jordan, P. & Brès, G.A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.CrossRefGoogle Scholar
Seiner, J. 1984 Advances in high speed jet aeroacoustics. In 9th Aeroacoustics Conference, AIAA Paper 1984-2275.Google Scholar
Sinayoko, S., Agarwal, A. & Hu, Z. 2011 Flow decomposition and aerodynamic sound generation. J. Fluid Mech. 668, 335350.CrossRefGoogle Scholar
Sinha, A., Rodrıguez, D., Brès, G.A. & Colonius, T. 2014 Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 7195.CrossRefGoogle Scholar
Sparks, C.A. & Wu, X. 2008 Nonlinear development of subsonic modes on compressible mixing layers: a unified strongly nonlinear critical-layer theory. J. Fluid Mech. 614, 105144.CrossRefGoogle Scholar
Suponitsky, V., Sandham, N.D. & Morfey, C.L. 2010 Linear and nonlinear mechanisms of sound radiation by instability waves in subsonic jets. J. Fluid Mech. 658, 509538.CrossRefGoogle Scholar
Suzuki, T. 2013 Coherent noise sources of a subsonic round jet investigated using hydrodynamic and acoustic phased-microphone arrays. J. Fluid Mech. 730, 659698.CrossRefGoogle Scholar
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.CrossRefGoogle Scholar
Tam, C., Golebiowski, M. & Seiner, J. 1996 On the two components of turbulent mixing noise from supersonic jets. In 2nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 1996-1716.Google Scholar
Tam, C.K.W. 1991 Broadband shock-associated noise from supersonic jets in flight. J. Sound Vib. 151 (1), 131147.CrossRefGoogle Scholar
Tam, C.K.W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.CrossRefGoogle Scholar
Tam, C.K.W. 2019 A phenomenological approach to jet noise: the two-source model. Phil. Trans. R. Soc. Lond. A 377 (2159), 20190078.Google ScholarPubMed
Tam, C.K.W. & Burton, D.E. 1984 Sound generated by instability waves of supersonic flow. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.CrossRefGoogle Scholar
Tam, C.K.W. & Morris, P.J. 1980 The radiation of sound by the instability waves of a compressible plane turbulent shear layer. J. Fluid Mech. 98, 349381.CrossRefGoogle Scholar
Tam, C.K.W., Viswanathan, K., Ahuja, K.K. & Panda, J. 2008 The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253292.CrossRefGoogle Scholar
Tanna, H.K. & Morris, P.J. 1977 In-flight simulation experiments on turbulent jet mixing noise. J. Sound Vib. 53 (3), 389405.CrossRefGoogle Scholar
Towne, A. & Colonius, T. 2015 One-way spatial integration of hyperbolic equations. J. Comput. Phys. 300, 844861.CrossRefGoogle Scholar
Viswanathan, K. 2004 Aeroacoustics of hot jets. J. Fluid Mech. 516, 3982.CrossRefGoogle Scholar
Viswanathan, K. 2008 Investigation of noise source mechanisms in subsonic jets. AIAA J. 46 (8), 20202032.CrossRefGoogle Scholar
Viswanathan, K. 2010 Distributions of noise sources in heated and cold jets: are they different? Intl J. Aeroacoust. 9 (4–5), 589625.CrossRefGoogle Scholar
Wan, Z., Yang, H., Zhang, X. & Sun, D. 2016 Instability waves and aerodynamic noise in a subsonic transitional turbulent jet. Eur. J. Mech. (B/Fluids) 57, 192203.CrossRefGoogle Scholar
Wu, X. 2005 Mach wave radiation of nonlinearly evolving supersonic instability modes in shear layers. J. Fluid Mech. 523, 121159.CrossRefGoogle Scholar
Wu, X. 2019 Nonlinear theories for shear-flow instabilities: physical insights and practical implications. Annu. Rev. Fluid Mech. 51, 421485.CrossRefGoogle Scholar
Wu, X. & Huerre, P. 2009 Low-frequency sound radiated by a nonlinear modulated wavepacket of helical modes on a subsonic circular jet. J. Fluid Mech. 637, 173211.CrossRefGoogle Scholar
Wu, X. & Tian, F. 2012 Spectral broadening and flow randomization in free shear layers. J. Fluid Mech. 706, 431469.CrossRefGoogle Scholar
Wu, X. & Zhang, Z. 2019 First-principle description of acoustic radiation of shear flows. Phil. Trans. R. Soc. Lond. A 377 (2159), 20190077.Google ScholarPubMed
Wu, X. & Zhuang, X. 2016 Nonlinear dynamics of large-scale coherent structures in turbulent free shear layers. J. Fluid Mech. 787, 396439.CrossRefGoogle Scholar
Zaman, K.B.M.Q. 1985 Far-field noise of a subsonic jet under controlled excitation. J. Fluid Mech. 152, 83111.CrossRefGoogle Scholar
Zaman, K.B.M.Q. & Hussain, A.K.M.F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101, 449491.CrossRefGoogle Scholar
Zaman, K.B.M.Q. & Hussain, A.K.M.F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.CrossRefGoogle Scholar
Zaman, K.B.M.Q. & Hussain, A.K.M.F. 1984 Natural large-scale structures in the axisymmetric mixing layer. J. Fluid Mech. 138, 325351.CrossRefGoogle Scholar
Zhang, Z. & Wu, X. 2020 Nonlinear evolution and acoustic radiation of coherent structures in subsonic turbulent free shear layers (referred to as ‘[I]’). J. Fluid Mech. 884, A10.CrossRefGoogle Scholar