Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T19:18:58.008Z Has data issue: false hasContentIssue false

Non-premixed swirl-type tubular flames burning liquid fuels

Published online by Cambridge University Press:  04 May 2018

Vinicius M. Sauer*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, 92697 CA, USA
Fernando F. Fachini
Affiliation:
Grupo de Mecânica de Fluidos Reativos, Laboratório de Combustão e Propulsão, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP 12630-000, Brazil
Derek Dunn-Rankin
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, 92697 CA, USA
*
Email address for correspondence: vmsauer@uci.edu

Abstract

Tubular flames represent a canonical combustion configuration that can simplify reacting flow analysis and also be employed in practical power generation systems. In this paper, a theoretical model for non-premixed tubular flames, with delivery of liquid fuel through porous walls into a swirling flow field, is presented. Perturbation theory is used to analyse this new tubular flame configuration, which is the non-premixed equivalent to a premixed swirl-type tubular burner – following the original classification of premixed tubular systems into swirl and counterflow types. The incompressible viscous flow field is modelled with an axisymmetric similarity solution. Axial decay of the initial swirl velocity and surface mass transfer from the porous walls are considered through the superposition of laminar swirling flow on a Berman flow with uniform mass injection in a straight pipe. The flame structure is obtained assuming infinitely fast conversion of reactants into products and unity Lewis numbers, allowing the application of the Shvab–Zel’dovich coupling function approach.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A.(Eds) 1965 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, 9th edn. Dover.Google Scholar
Ascher, U. 1980 Solving boundary-value problems with a spline-collocation code. J. Comput. Phys. 34 (3), 401413.Google Scholar
Banks, W. H. H. & Zaturska, M. B. 1996 Swirling flow in a porous pipe with an accelerating wall. Acta Mech. 119 (1), 112.Google Scholar
Berman, A. S. 1953 Laminar flow in channels with porous walls. Trans. ASME J. Appl. Phys. 24 (9), 12321235.Google Scholar
Berman, A. S. 1958 Effects of porous boundaries on the flow of fluids in systems with various geometries. In Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, vol. 4, pp. 351358. Oak Ridge Gaseous Diffusion Plant, TN.Google Scholar
Chellam, S., Wiesner, M. R., Dawson, C. & Brown, G. R. 1995 Laminar flow in porous ducts. Rev. Chem. Engng 11 (1), 5399.Google Scholar
Collatz, L. & Görtler, H. 1954 Rohrströmung mit schwachem Drall. Z. Angew. Math. Phys. 5 (2), 95110.Google Scholar
Deka, B. C. 1963 Some effects of weak swirl on laminar pipe flow. Proc. Indian Nat. Sci. Acad. Part A 29 (2A), 251270.Google Scholar
Deka, B. C. 1966 Some effects of weak swirl on laminar pipe flow. Proc. Indian Nat. Sci. Acad. Part A 32 (3A), 292317.Google Scholar
Dixon-Lewis, G., Giovangigli, V., Kee, R. J., Miller, J. A., Rogg, B., Smooke, M. D., Stahl, G. & Warnatz, J. 1991 Numerical modeling of the structure and properties of tubular strained laminar premixed flames. In Dynamics of Deflagrations and Reactive Systems: Flames, Progress in Astronautics and Aeronautics, vol. 131, pp. 125144. American Institute of Aeronautics and Astronautics.Google Scholar
Dunn-Rankin, D. 2013 Tubular flame characteristics of miniature liquid film combustors. In Tubular Combustion (ed. Ishiuka, S., Dunn-Rankin, D. & Pitz, R. W.), pp. 189205. Momentum Press.Google Scholar
Durlofsky, L. & Brady, J. F. 1984 The spatial stability of a class of similarity solutions. Phys. Fluids 27 (5), 10681076.Google Scholar
Eckert, E. R. G., Donoughe, P. L. & Moore, B. J.1957 Velocity and friction characteristics of laminar viscous boundary-layer and channel flow over surfaces with ejection or suction. Tech. Rep. TN-4102. NACA, Cleveland, OH.Google Scholar
Eroshenko, V. M., Zaichik, L. I. & Rabovskii, V. B. 1980 Heat exchange in tubes with permeable walls in the presence of internal heat sources. J. Engng Phys. Thermophys. 38 (3), 222227.Google Scholar
Galowin, L. S., Fletcher, L. S. & Desantis, M. J. 1974 Investigation of laminar flow in a porous pipe with variable wall suction. AIAA J. 12 (11), 15851589.Google Scholar
Giani, C. & Dunn-Rankin, D. 2013 Miniature fuel film combustor: swirl vane design and combustor characterization. Combust. Sci. Technol. 185 (10), 14641481.Google Scholar
Graetz, L. 1882 Ueber die Wärmeleitungsfähigkeit von Flüssigkeiten. Ann. Phys. 254 (1), 7994.Google Scholar
Haldenwang, P. 2007 Laminar flow in a two-dimensional plane channel with local pressure-dependent crossflow. J. Fluid Mech. 593, 463473.CrossRefGoogle Scholar
Hu, S., Wang, P., Pitz, R. W. & Smooke, M. D. 2007 Experimental and numerical investigation of non-premixed tubular flames. Proc. Combust. Inst. 31 (1), 10931099.Google Scholar
Ishizuka, S. 1985 On the behavior of premixed flames in a rotating flow field: establishment of tubular flames. Proc. Combust. Inst. 20 (1), 287294.Google Scholar
Ishizuka, S., Motodamari, T. & Shimokuri, D. 2007 Rapidly mixed combustion in a tubular flame burner. Proc. Combust. Inst. 31 (1), 10851092.Google Scholar
Kierzenka, J. & Shampine, L. F. 2001 A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Softw. 27 (3), 299316.Google Scholar
Kinney, R. B. 1968 Fully developed frictional and heat-transfer characteristics of laminar flow in porous tubes. Intl J. Heat Mass Transfer 11 (9), 13931401.Google Scholar
Kinney, R. B. & Sparrow, E. M. 1970 Laminar swirling flow in a tube with surface mass transfer. Trans. ASME J. Appl. Mech. 37 (4), 936944.Google Scholar
Kreith, F. & Sonju, O. K. 1965 The decay of a turbulent swirl in a pipe. J. Fluid Mech. 22 (2), 257271.CrossRefGoogle Scholar
Lavan, Z., Nielsen, H. & Fejer, A. A. 1969 Separation and flow reversal in swirling flows in circular ducts. Phys. Fluids 12 (9), 17471757.Google Scholar
Lee, C. S., Ou, J. J. & Chen, S. H. 1987 The velocity profile and resultant mixing with chemical reaction in rotating tubular flow. Chem. Engng Sci. 42 (1), 5361.Google Scholar
Liñán, A., Vera, M. & Sánchez, A. L. 2015 Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech. 47 (1), 293314.Google Scholar
Mahmood, M., Hossain, M. A., Asghar, S. & Hayat, T. 2011 Application of homotopy perturbation method to deformable channel with wall suction and injection in a porous medium. Intl J. Nonlin. Sci. Num. 9 (2), 195206.Google Scholar
Mohan, S. & Matalon, M. 2017 Diffusion flames and diffusion flame-streets in three dimensional micro-channels. Combust. Flame 177, 155170.CrossRefGoogle Scholar
Mosbacher, D. M., Wehrmeyer, J. A., Pitz, R. W., Sung, C.-J. & Byrd, J. L. 2002 Experimental and numerical investigation of premixed tubular flames. Proc. Combust. Inst. 29 (2), 14791486.CrossRefGoogle Scholar
Namyatov, I. G., Minaev, S. S., Babkin, V. S., Bunev, V. A. & Korzhavin, A. A. 2000 Diffusion combustion of a liquid fuel film on a metal substrate. Combust. Explos. Shock Waves 36 (5), 562570.Google Scholar
Nield, D. A. & Bejan, A. 2013 Convection in Porous Media. Springer.Google Scholar
Peng, Y. & Yuan, S. W. 1965 Laminar pipe flow with mass transfer cooling. Trans. ASME J. Heat Transfer 87 (2), 252258.Google Scholar
Pham, T. K., Dunn-Rankin, D. & Sirignano, W. A. 2007 Flame structure in small-scale liquid film combustors. Proc. Combust. Inst. 31 (2), 32693275.Google Scholar
Pitz, R. W., Hu, S. & Wang, P. 2014 Tubular premixed and diffusion flames: effect of stretch and curvature. Prog. Energy Combust. Sci. 42, 134.Google Scholar
Prager, S. 1964 Spiral flow in a stationary porous pipe. Phys. Fluids 7 (6), 907908.Google Scholar
Raithby, G 1971 Laminar heat transfer in the thermal entrance region of circular tubes and two-dimensional rectangular ducts with wall suction and injection. Intl J. Heat Mass Transfer 14 (2), 223243.Google Scholar
Raithby, G. D. & Knudsen, D. C. 1974 Hydrodynamic development in a duct with suction and blowing. Trans. ASME J. Appl. Mech. 41 (4), 896902.Google Scholar
Robinson, W. A. 1976 The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls. J. Engng Maths 10 (1), 2340.CrossRefGoogle Scholar
Sauer, V. M., Leiroz, A. J. K. & Colaço, M. J. 2012 Analysis of biofuel reacting flows in ducts. In Proceedings of the ENCIT 2012, pp. 18. Rio de Janeiro.Google Scholar
Secomb, T. W. 1978 Flow in a channel with pulsating walls. J. Fluid Mech. 88 (2), 273288.Google Scholar
Sellars, J. R. 1955 Laminar flow in channels with porous walls at high suction Reynolds numbers. J. Appl. Phys. 26 (4), 489490.Google Scholar
Shi, B., Shimokuri, D. & Ishizuka, S. 2013 Methane/oxygen combustion in a rapidly mixed type tubular flame burner. Proc. Combust. Inst. 34 (2), 33693377.Google Scholar
Sirignano, W. A., Pham, T. K. & Dunn-Rankin, D. 2002 Miniature-scale liquid-fuel-film combustor. Proc. Combust. Inst. 29 (1), 925931.Google Scholar
Sirignano, W. A., Stanchi, S. & Imaoka, R. 2005 Linear analysis of a liquid-film combustor. J. Propul. Power 21 (6), 10751091.CrossRefGoogle Scholar
Skalak, F. & Wang, C. 1978 On the nonunique solutions of laminar flow through a porous tube or channel. SIAM J. Appl. Maths 34 (3), 535544.Google Scholar
Skalak, F. M. & Wang, C.-Y. 1977 Pulsatile flow in a tube with wall injection and suction. Appl. Sci. Res. 33 (3–4), 269307.Google Scholar
Smooke, M. D. & Giovangigli, V. 1991 Extinction of tubular premixed laminar flames with complex chemistry. Proc. Combust. Inst. 23 (1), 447454.Google Scholar
Spalding, D. B. 1950 Combustion of liquid fuels. Nature 165 (4187), 160.Google Scholar
Talbot, L. 1954 Laminar swirling pipe flow. Trans. ASME J. Appl. Mech. 21, 17.Google Scholar
Terrill, R. M. 1964 Laminar flow in a uniformly porous channel. Aeronaut. Q. 15 (3), 299310.Google Scholar
Terrill, R. M. 1967 Flow through a porous annulus. Appl. Sci. Res. 17 (3), 204222.Google Scholar
Terrill, R. M. & Thomas, P. W. 1969 On laminar flow through a uniformly porous pipe. Appl. Sci. Res. 21 (1), 3767.Google Scholar
Terrill, R. M. & Thomas, P. W. 1973 Spiral flow in a porous pipe. Phys. Fluids 16 (3), 356359.Google Scholar
Verma, P. D. & Gaur, Y. N. 1974 Laminar swirling flow in an annulus with porous walls. Proc. Indian Acad. Sci. A 80 (5), 211222.Google Scholar
Wang, P., Hu, S. & Pitz, R. W. 2007 Numerical investigation of the curvature effects on diffusion flames. Proc. Combust. Inst. 31 (1), 989996.Google Scholar
Wang, P., Wehrmeyer, J. A. & Pitz, R. W. 2006 Stretch rate of tubular premixed flames. Combust. Flame 145 (1–2), 401414.Google Scholar
White, F. M. Jr. 1962 Laminar flow in a uniformly porous tube. Trans. ASME J. Appl. Mech. 29 (1), 201204.Google Scholar
Xuan, Y., Blanquart, G. & Mueller, M. E. 2014 Modeling curvature effects in diffusion flames using a laminar flamelet model. Combust. Flame 161 (5), 12941309.Google Scholar
Yuan, S. W. & Finkelstein, A. B.1955 Laminar pipe flow with injection and suction through a porous wall. Tech. Rep. AD058831. Princeton University.Google Scholar
Yuan, S. W. & Finkelstein, A. B. 1958 Heat transfer in laminar pipe flow with uniform coolant injection. J. Jet Propul. 28 (3), 178181.Google Scholar
Zaturska, M. B., Drazin, P. G. & Banks, W. H. H. 1988 On the flow of a viscous fluid driven along a channel by suction at porous walls. Fluid Dyn. Res. 4 (3), 151178.Google Scholar