Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-13T10:58:33.238Z Has data issue: false hasContentIssue false

Particle motion in a bed under a rigid plate, submerged and oscillated over its surface, and bed morphologies induced by flexible plates

Published online by Cambridge University Press:  13 September 2024

Anna Prati*
Affiliation:
Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
Michele Larcher
Affiliation:
Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
James T. Jenkins
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
Luigi La Ragione
Affiliation:
Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, 70125 Bari, Italy
*
Email address for correspondence: anna.prati@unibz.it

Abstract

We study the behaviour of a particle bed immersed in water when a flow generated by an oscillating plate is induced above it. We first consider a rigid plate submerged and oscillated over a particle bed. During upward motion of the plate, a portion of the bed fails, allowing particle displacement, and the bed surface to deform into a heap. We have already determined the flow of the fluid above and within the bed. This work describes the particle motion within the failed region of the bed: when the particles are mobile, they follow the fluid. We depth average the balance of mass and obtain an evolution equation for the displacement of the bed surface. We solve this equation and compare the predictions with the measurements of surface displacement in earlier experiments on rigid square plates. We carry out new experiments to measure the surface displacements under elongated plates. Elongated rigid plates behave similarly to the rigid square ones. Flexible plates produce multiple heaps. We determine that the peaks of these heaps are correlated with the flexural modes of the plates and occur at points along the bed at which the fluid pressure has its extreme values. Different plate flexural modes, resulting in different numbers of heaps, are produced by driving the plate at different frequencies. The particle motion within the bed and heap evolution under a flexible plate can be roughly described by regarding it as two or more rigid plates. We test the predictions of the theory against experiments.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carroll, C.S., Louge, M.Y. & Turnbull, B. 2013 Frontal dynamics of powder snow avalanches. J. Geophys. Res. 118, 12.Google Scholar
Carroll, C.S., Turnbull, B. & Louge, M.Y. 2012 Role of fluid density in shaping suspension currents driven by frontal particle blow-out. Phys. Fluids 24, 066603.CrossRefGoogle Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469493.CrossRefGoogle Scholar
Deshpande, N.S., Arratia, P.E. & Jerolmack, D.J. 2023 The (in)sensitivity of granular creep to materials and boundaries. Geophys. Res. Lett. 50, e2023GL102938.CrossRefGoogle Scholar
Deshpande, N.S., Furbish, D.J., Arratia, P.E. & Jerolmack, D.J. 2021 The perpetual fragility of creeping hillslopes. Nat. Commun. 12, 3909.CrossRefGoogle ScholarPubMed
Dijksman, J.A., Wortel, G.H., van Dellen, L.T.H., Dauchot, O. & van Hecke, M. 2011 Jamming, yielding, and rheology of weakly vibrated granular media. Phys. Rev. Lett. 107 (10), 108303.CrossRefGoogle ScholarPubMed
Ferdowsi, B., Ortiz, C.P. & Jerolmack, D.J. 2018 Glassy dynamics of landscape evolution. Proc. Natl Acad. Sci. USA 115, 48274832.CrossRefGoogle ScholarPubMed
Hanotin, C., Kiesgen de Richter, S., Marchal, P., Michot, L.J. & Baravian, C. 2012 Vibration-induced liquefaction of granular suspensions. Phys. Rev. Lett. 108, 198301.CrossRefGoogle ScholarPubMed
Hanotin, C., Kiesgen de Richter, S., Michot, L.J. & Marchal, P. 2015 Viscoelasticity of vibrated granular suspensions. J. Rheol. 59, 253273.CrossRefGoogle Scholar
Hanotin, C., Marchal, P., Michot, L.J., Baravian, C. & Kiesgen De Richter, S. 2013 Dynamics of vibrated granular suspensions probed by mechanical spectroscopy and diffusing wave spectroscopy measurements. Soft Matt. 9 (39), 93529360.CrossRefGoogle Scholar
van Hecke, M. 2015 Slow granular flows: the dominant role of tiny fluctuations. C. R. Phys. 16, 3744.CrossRefGoogle Scholar
Houssais, M., Maldarelli, C. & Morris, J.F. 2021 Athermal sediment creep triggered by porous flow. Phys. Rev. Fluids 6, L012301.CrossRefGoogle Scholar
Houssais, M., Ortiz, C.P., Durian, D.J. & Jerolmack, D.J. 2015 Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat. Commun. 6, 18.CrossRefGoogle ScholarPubMed
Jenkins, J.T. & Larcher, M. 2023 Dense, steady, fully developed fluid-particle flows over inclined, erodible beds. Phys. Rev. Fluids 8, 024303.CrossRefGoogle Scholar
Jerolmack, D.J. & Daniels, K.E. 2018 Viewing earth's surface as a soft-matter landscape. Nat. Rev. Phys. 12, 716730.Google Scholar
Johnson, B.A. & Cowen, E.A. 2020 Sediment suspension and bed morphology in a mean shear free turbulent boundary layer. J. Fluid Mech. 894, A8.CrossRefGoogle Scholar
Johnson, L.D., Koplik, J. & Dashen, R. 1987 Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379402.CrossRefGoogle Scholar
La Ragione, L., Laurent, K., Jenkins, J.T. & Bewley, G.P. 2019 Bedforms produced on a particle bed by vertical oscillations of a plate. Phys. Rev. Lett. 123 (5), 058501.CrossRefGoogle ScholarPubMed
Laurent, K., La Ragione, L., Jenkins, J.T. & Bewley, G.P. 2022 How vertical oscillatory motion above a saturated sand bed leads to heap formation. Phys. Rev. E 105, 054901.CrossRefGoogle ScholarPubMed
Liu, P.P.Y. & Lara, J. 2007 Long-wave-induced flows in an unsaturated permeable seabed. J. Fluid Mech. 586, 323345.CrossRefGoogle Scholar
Louge, M.Y., Carroll, C.S. & Turnbull, B. 2011 Role of pore pressure gradients in sustaining frontal particle entrainment in eruption currents: the case of powder snow avalanches. J. Geophys. Res. 116, F04030.Google Scholar
Marchal, P., Hanotin, C., Michot, L.J. & de Richter, S.K. 2013 Two-state model to describe the rheological behavior of vibrated granular matter. Phys. Rev. E 88 (1), 012207.CrossRefGoogle ScholarPubMed
Marchal, P., Smirani, N. & Choplin, L. 2009 Rheology of dense-phase vibrated powders and molecular analogies. J. Rheol. 53, 129.CrossRefGoogle Scholar
Rivera-Rosario, G.A., Diamessis, P.J. & Jenkins, J.T. 2017 Bed failure induced by internal solitary waves. J. Geophys. Res. 122, 122.CrossRefGoogle Scholar
Shields, A. 1936 Sand ripples and dunes. PhD thesis, Preußische Versuchsanstalt für Wasserbau und Schiffbau.Google Scholar
Song, O. 1986 Modal analysis of a cantilever plate. PhD thesis, New Jersey Institute of Technology.Google Scholar
Sumer, B.M. 2014 Liquefaction Around Marine Structures. World Scientific.CrossRefGoogle Scholar
Yadykin, Y., Tenetov, V. & Levin, D. 2003 The added mass of a flexible plate oscillating in a fluid. J. Fluids Struct. 17 (1), 115123.CrossRefGoogle Scholar
Zhou, Y.C., Xu, B.H., Yu, A.B. & Zulli, P. 2002 An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 125, 4554.CrossRefGoogle Scholar