Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T16:39:20.106Z Has data issue: false hasContentIssue false

Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines

Published online by Cambridge University Press:  26 June 2018

Xianmin Xu
Affiliation:
NCMIS & LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Beijing 100190, China School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Yana Di
Affiliation:
NCMIS & LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Beijing 100190, China School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Haijun Yu*
Affiliation:
NCMIS & LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Beijing 100190, China School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
*
Email address for correspondence: hyu@lsec.cc.ac.cn

Abstract

The sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for binary fluids with moving contact lines are studied by asymptotic analysis and numerical simulations. The effects of the mobility number as well as a phenomenological relaxation parameter on the boundary condition are considered. In asymptotic analysis, we consider both the cases that the mobility number is proportional to the Cahn number and the square of the Cahn number, and derive the sharp-interface limits for several set-ups of the boundary relaxation parameter. It is shown that the sharp-interface limit of the phase-field model is the standard two-phase incompressible Navier–Stokes equations coupled with several different slip boundary conditions. Numerical results are consistent with the analysis results and also illustrate the different convergence rates of the sharp-interface limits for different scalings of the two parameters.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aland, S. & Chen, F. 2016 An efficient and energy stable scheme for a phase-field model for the moving contact line problem. Intl J. Numer. Meth. Fluids 272, 657671.Google Scholar
Allen, S. M. & Cahn, J. W. 1979 A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (6), 10851095.Google Scholar
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139165.Google Scholar
Bao, K., Shi, Y., Sun, S. & Wang, X.-P. 2012 A finite element method for the numerical solution of the coupled Cahn–Hilliard and Navier–Stokes system for moving contact line problems. J. Comput. Phys. 231 (24), 80838099.Google Scholar
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299 (1), 113.Google Scholar
Blake, T. D. & De Coninck, J. 2011 Dynamics of wetting and Kramer’s theory. Eur. Phys. J. 197 (1), 249264.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739805.Google Scholar
Briant, A. J., Wagner, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion. Part I. Liquid–gas systems. Phys. Rev. E 69 (3), 031602.Google Scholar
Buscaglia, G. C. & Ausas, R. F. 2011 Variational formulations for surface tension, capillarity and wetting. Comput. Meth. Appl. Mech. Engng 200 (45), 30113025.Google Scholar
Caginalp, G. & Chen, X. 1998 Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9 (04), 417445.Google Scholar
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. Part II. Interfacial free energy. J. Chem. Phys. 28 (2), 258267.Google Scholar
Carlson, A., Do-Quang, M. & Amberg, G. 2009 Modeling of dynamic wetting far from equilibrium. Phys. Fluids 21 (12), 121701.Google Scholar
Chen, H.-Y., Jasnow, D. & Viñals, J. 2000 Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85 (8), 16861689.Google Scholar
Chen, X., Wang, X. & Xu, X. 2014 Analysis of the Cahn–Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics. Arch. Rat. Mech. Anal. 213 (1), 124.Google Scholar
Cox, R. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.Google Scholar
Ding, H. & Spelt, P. D.M. 2007 Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E 75 (4), 046708.Google Scholar
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11 (1), 371400.Google Scholar
Eggers, J. 2005 Contact line motion for partially wetting fluids. Phys. Rev. E 72 (6), 061605.Google Scholar
Fakhari, A. & Bolster, D. 2017 Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios. J. Comput. Phys. 334, 620638.Google Scholar
Gao, M. & Wang, X.-P. 2012 A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231 (4), 13721386.Google Scholar
Gao, M. & Wang, X.-P. 2014 An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. J. Comput. Phys. 272, 704718.Google Scholar
Gerbeau, J.-F. & Lelievre, T. 2009 Generalized Navier boundary condition and geometric conservation law for surface tension. Comput. Meth. Appl. Mech. Engng 198 (5), 644656.Google Scholar
Guo, S., Gao, M., Xiong, X., Wang, Y. J., Wang, X., Sheng, P. & Tong, P. 2013 Direct measurement of friction of a fluctuating contact line. Phys. Rev. Lett. 111 (2), 026101.Google Scholar
Gurtin, M. E., Polignone, D. & Vinals, J. 1996 Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6 (06), 815831.Google Scholar
Haley, P. & Miksis, M. 1991 The effect of the contact line on droplet spreading. J. Fluid Mech. 223, 5781.Google Scholar
Huang, J. J., Shu, C. & Chew, Y. T. 2009 Mobility-dependent bifurcations in capillarity-driven two-phase fluid systems by using a lattice Boltzmann phase-field model. Intl J. Numer. Meth. Fluids 60 (2), 203225.Google Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.Google Scholar
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1), 96127.Google Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.Google Scholar
Khatavkar, V. V., Anderson, P. D. & Meijer, H. E. H. 2006 On scaling of diffuse–interface models. Chem. Engng Sci. 61 (8), 23642378.Google Scholar
Kusumaatmaja, H., Hemingway, E. J. & Fielding, S. M. 2016 Moving contact line dynamics: from diffuse to sharp interfaces. J. Fluid Mech. 788, 209227.Google Scholar
Lowengrub, J. & Truskinovsky, L. 1998 Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454 (1978), 26172654.Google Scholar
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C. M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids.. J. Fluid Mech. 714, 95126.Google Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.Google Scholar
Pego, R. L. 1989 Front migration in the nonlinear Cahn–Hilliard equation. Proc. R. Soc. Lond. A 422 (1863), 261278.Google Scholar
Pismen, L. M. 2002 Mesoscopic hydrodynamics of contact line motion. Colloids Surf. A 206 (1), 1130.Google Scholar
Pismen, L. M. & Pomeau, Y. 2000 Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62 (2), 24802492.Google Scholar
Qian, T., Wang, X.-P. & Sheng, P. 2003 Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306.Google Scholar
Qian, T., Wang, X.-P. & Sheng, P. 2004 Power-law slip profile of the moving contact line in two-phase immiscible flows. Phys. Rev. lett. 63, 094501.Google Scholar
Qian, T., Wang, X.-P. & Sheng, P. 2006 A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333360.Google Scholar
Ren, W. & E, W. 2007 Boundary conditions for the moving contact line problem. Phys. Fluids 19 (2), 022101.Google Scholar
Ren, W. & E, W. 2011 Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Commun. Math. Sci. 9 (2), 597606.Google Scholar
Renardy, M., Renardy, Y. & Li, J. 2001 Numerical simulation of moving contact line problems using a volume-of-fluid method. J. Comput. Phys. 171 (1), 243263.Google Scholar
Reusken, A., Xu, X. & Zhang, L. 2017 Finite element methods for a class of continuum models for immiscible flows with moving contact lines. Intl J. Numer. Meth. Fluids 84, 268291.Google Scholar
Schwartz, L. W. & Eley, R. R. 1998 Simulation of droplet motion on low-energy and heterogeneous surfaces. J. Colloid Interface Sci. 202 (1), 173188.Google Scholar
Seppecher, P. 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Engng Sci. 34 (9), 977992.Google Scholar
Seveno, D., Vaillant, A., Rioboo, R., Adao, H, Conti, J. & De Coninck, J. 2009 Dynamics of wetting revisited. Langmuir 25 (22), 1303413044.Google Scholar
Shen, J., Yang, X. & Yu, H. 2015 Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617630.Google Scholar
Shikhmurzaev, Y. D. 1993 The moving contact line on a smooth solid surface. Intl J. Multiphase Flow 19 (4), 589610.Google Scholar
Sibley, D. N., Nold, A. & Kalliadasis, S. 2013a Unifying binary fluid diffuse-interface models in the sharp-interface limit. J. Fluid Mech. 736, 543.Google Scholar
Sibley, D. N., Nold, A., Savva, N. & Kalliadasis, S. 2013b The contact line behaviour of solid–liquid–gas diffuse-interface models. Phys. Fluids 25 (9), 092111.Google Scholar
Sibley, D. N., Nold, A., Savva, N. & Kalliadasis, S. 2013c On the moving contact line singularity: asymptotics of a diffuse-interface model. Eur. Phys. J. E 36 (3), 17.Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Spelt, P. D. M. 2005 A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207 (2), 389404.Google Scholar
Sui, Y., Ding, H. & Spelt, P. D. M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.Google Scholar
Teigen, K. E., Song, P., Lowengrub, J. & Voigt, A. 2011 A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230 (2), 375393.Google Scholar
Wang, L. & Yu, H. 2018a Convergence analysis of an unconditionally energy stable linear Crank–Nicolson scheme for the Cahn–Hilliard equation. J. Math. Study 51 (1), 89114.Google Scholar
Wang, L. & Yu, H. 2018b On efficient second order stabilized semi-implicit schemes for the Cahn–Hilliard phase-field equation. J. Sci. Comput. doi:10.1007/s10915-018-0746-2.Google Scholar
Wang, X.-P., Qian, T. & Sheng, P. 2008 Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 5978.Google Scholar
Wang, X.-P. & Wang, Y.-G. 2007 The sharp interface limit of a phase field model for moving contact line problem. Meth. Appl. Anal. 14 (3), 287294.Google Scholar
Xu, X. & Wang, X.-P. 2011 Analysis of wetting and contact angle hysteresis on chemically patterned surfaces. SIAM J. Appl. Maths 71, 17531779.Google Scholar
Yamamoto, Y., Tokieda, K., Wakimoto, T., Ito, T. & Katoh, K. 2014 Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic–microscopic contact angle relation and generalized Navier boundary condition. Intl J. Multiphase Flow 59, 106112.Google Scholar
Yang, X. & Yu, H. 2018 Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J. Sci. Comput. (to appear).Google Scholar
Yu, H. & Yang, X. 2017 Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665686.Google Scholar
Yue, P. & Feng, J. J. 2011a Can diffuse-interface models quantitatively describe moving contact lines? Eur. Phys. J. 197 (1), 3746.Google Scholar
Yue, P. & Feng, J. J. 2011b Wall energy relaxation in the Cahn–Hilliard model for moving contact lines. Phys. Fluids 23, 012106.Google Scholar
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.Google Scholar
Yue, P., Zhou, C. & Feng, J. J. 2010 Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279294.Google Scholar
Zhou, M.-Y. & Sheng, P. 1990 Dynamics of immiscible-fluid displacement in a capillary tube. Phys. Rev. Lett. 64 (8), 882885.Google Scholar