Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-15T22:26:01.890Z Has data issue: false hasContentIssue false

Smoke observations of the formation of a Kármán vortex street

Published online by Cambridge University Press:  29 March 2006

M. M. Zdravkovich
Affiliation:
Engineering Department, Cambridge University

Abstract

A smoke visualization technique was used to study the laminar wake behind a single cylinder. Observations of the wake revealed the nature of the process of formation of a Kármán vortex street: instability of the shear layers was coupled with the rolling up process induced by the concentration of vorticity.

An unexpected mass transfer was observed through the Kármán vortex street which cause mixing of the fluid surrounding the wake.

Type
Research Article
Copyright
© 1969 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bénard, H. 1908 Formation de centres de giration a l'arriere d'un obstacle en mouvement. Comp. Rend. 147, 839842.Google Scholar
Fage, A. & Johansen, F. C. 1927 On the flow of air behind an inclined flat plate of infinite span. Proc. Roy. Soc. A 116, 170197.Google Scholar
Homann, F. 1936 Einfluss grosser Zähigkeit bei Strömmung um Zylindern. Forsch. Geb. Ing.-Wes. 7, 110.Google Scholar
Hooker, S. G. 1936 On the action of viscosity in increasing the spacing ratio of a vortex street. Proc. Roy. Soc. A 154, 6789.Google Scholar
Kármán, Th. von 1911 Ueber den Mechanismus des Widerstandes den ein bewegter Körper in einer Flüssigkeit erfahrt. Gött. Nachr. 509517.Google Scholar
Minchin, L. T. 1951 Discussion on G. I. Taylor lecture (see Taylor). Proc. Gen. Disc. on Heat Transfer. Inst. Mech. Eng.Google Scholar
Nayler, J. L. & Frazer, R. A. 1917 Vortex motion. (i) Preliminary report upon an experimental method of investigating, by the aid of kinematograph photography, the history of eddying flow past a model immersed in water. Advisory Committee for Aeronautics, R. & M. (new series), no. 332.
Pierce, D. 1961 Photographic evidence of the formation and growth of vorticity behind plates accelerated from rest in still air. J. Fluid Mech. 11, 460464.Google Scholar
Poisson-Quinton, P. L. & Jousserandot, P. 1957 Influence du soufflage au voisinage du bord de fuite sur les caracteristiques d'une aile aux grandes vitesses. La Rech. Aero. 56, 2100.Google Scholar
Preston, J. H. & Sweeting, N. E. 1943 An improved smoke generator for use in the visualization of airflow, particularly boundary layer flow at high Reynolds numbers. Aero. Res. Counc. R. & M. no. 2023.Google Scholar
Price, P. 1956 Suppression of the fluid-induced vibration of circular cylinders. J. Engng. Mech. Div. ASCE, paper 1030, 82, EM 3.Google Scholar
Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA TR 1191.Google Scholar
Taneda, S. 1956 Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Japan, 11, 302307.Google Scholar
Taylor, G. I. 1951 The mechanism of eddy diffusivity. Proc. Gen. Disc. on Heat Transfer. Inst. Mech. Eng.Google Scholar
Wood, C. J. 1964 Effect of base bleed on a periodic wake. J. Roy. Aero. Soc. 68, 477482.Google Scholar