Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-18T14:42:09.177Z Has data issue: false hasContentIssue false

Snap-induced flow in a closed channel

Published online by Cambridge University Press:  02 May 2024

Oz Oshri*
Affiliation:
Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Kirill Goncharuk
Affiliation:
Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Yuri Feldman
Affiliation:
Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
*
Email address for correspondence: oshrioz@bgu.ac.il

Abstract

Snap-through is a buckling instability that allows slender objects, including those in plant and biological systems, to generate rapid motion that would be impossible if they were to use their internal forces exclusively. In microfluidic devices, such as micromechanical switches and pumps, this phenomenon has practical applications for manipulating fluids at small scales. The onset of this elastic instability often drives the surrounding fluid into motion – a process known as snap-induced flow. To analyse the complex dynamics resulting from the interaction between a sheet and a fluid, we develop a prototypical model of a thin sheet that is compressed between the two sides of a closed channel filled with an inviscid fluid. At first, the sheet bends towards the upstream direction and the system is at rest. However, once the pressure difference in the channel exceeds a critical value, the sheet snaps to the opposite side and drives the fluid dynamics. We formulate an analytical model that combines the elasticity of thin sheets with the hydrodynamics of inviscid fluids to explore how external pressure differences, material properties and geometric factors influence the system's behaviour. To analyse the early stages of the evolution, we perform a linear stability analysis and obtain the growth rate and the critical pressure difference for the onset of the instability. A weakly nonlinear analysis suggests that the system can exhibit a pressure spike in the vicinity of the inverted configuration.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arena, G., Groh, R.M.J., Brinkmeyer, A., Theunissen, R., Weaver, P.M. & Pirrera, A. 2017 Adaptive compliant structures for flow regulation. Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 473 (2204), 20170334.Google ScholarPubMed
Boisseau, S., Despesse, G., Monfray, S., Puscasu, O. & Skotnicki, T. 2013 Semi-flexible bimetal-based thermal energy harvesters. Smart Mater. Struct. 22 (2), 025021.10.1088/0964-1726/22/2/025021CrossRefGoogle Scholar
Coene, R. 1992 Flutter of slender bodies under axial stress. Appl. Sci. Res. 49 (2), 175187.10.1007/BF01799252CrossRefGoogle Scholar
Fargette, A., Neukirch, S. & Antkowiak, A. 2014 Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett. 112, 137802.10.1103/PhysRevLett.112.137802CrossRefGoogle ScholarPubMed
Forterre, Y., Skotheim, J.M., Dumais, J. & Mahadevan, L. 2005 How the venus flytrap snaps. Nat. Phys. 433, 14764687.Google ScholarPubMed
Ghidaoui, M.S., Zhao, M., McInnis, D.A. & Axworthy, D.H. 2005 A review of water hammer theory and practice. Appl. Mech. Rev. 58 (1), 4976.10.1115/1.1828050CrossRefGoogle Scholar
Giannopoulos, G., Monreal, J. & Vantomme, J. 2007 Snap-through buckling behavior of piezoelectric bimorph beams: I. Analytical and numerical modeling. Smart Mater. Struct. 16 (4), 11481157.10.1088/0964-1726/16/4/024CrossRefGoogle Scholar
Gomez, M., Moulton, D.E. & Vella, D. 2017 a Critical slowing down in purely elastic ‘snap-through’ instabilities. Nat. Phys. 13 (2), 142145.10.1038/nphys3915CrossRefGoogle Scholar
Gomez, M., Moulton, D.E. & Vella, D. 2017 b Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119, 144502.10.1103/PhysRevLett.119.144502CrossRefGoogle ScholarPubMed
Gomez, M., Moulton, D.E. & Vella, D. 2019 Dynamics of viscoelastic snap-through. J. Mech. Phys. Solids 124, 781813.10.1016/j.jmps.2018.11.020CrossRefGoogle Scholar
Gonçalves, P.B., Pamplona, D., Teixeira, P.B.C., Jerusalmi, R.L.C., Cestari, I.A. & Leirner, A.A. 2003 Dynamic non-linear behavior and stability of a ventricular assist device. Intl J. Solids Struct. 40 (19), 50175035.10.1016/S0020-7683(03)00252-XCrossRefGoogle Scholar
Goncharuk, K., Feldman, Y. & Oshri, O. 2023 Fluttering-induced flow in a closed chamber. J. Fluid Mech. 976, A15.10.1017/jfm.2023.901CrossRefGoogle Scholar
Goriely, A., Nizette, M. & Tabor, M. 2001 On the dynamics of elastic strips. J. Nonlinear Sci. 11 (1), 345.10.1007/s003320010009CrossRefGoogle Scholar
Harne, R.L. & Wang, K.W. 2013 A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22 (2), 023001.10.1088/0964-1726/22/2/023001CrossRefGoogle Scholar
Holmes, D.P. 2019 Elasticity and stability of shape-shifting structures. Curr. Opin. Colloid Interface Sci. 40, 118137.10.1016/j.cocis.2019.02.008CrossRefGoogle Scholar
Holmes, D.P. & Crosby, A.J. 2007 Snapping surfaces. Adv. Mater. 19 (21), 35893593.10.1002/adma.200700584CrossRefGoogle Scholar
Hu, N. & Burgueño, R. 2015 Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24 (6), 063001.10.1088/0964-1726/24/6/063001CrossRefGoogle Scholar
Jiao, S. & Liu, M. 2021 Snap-through in graphene nanochannels: with application to fluidic control. ACS Appl. Mater. Interfaces 13 (1), 11581168.10.1021/acsami.0c16468CrossRefGoogle ScholarPubMed
Kessler, Y., Ilic, B.R., Krylov, S. & Liberzon, A. 2018 Flow sensor based on the snap-through detection of a curved micromechanical beam. J. Microelectromech. Syst. 27 (6), 945947.10.1109/JMEMS.2018.2868776CrossRefGoogle ScholarPubMed
Kim, H., Lahooti, M., Kim, J. & Kim, D. 2021 Flow-induced periodic snap-through dynamics. J. Fluid Mech. 913, A52.10.1017/jfm.2021.57CrossRefGoogle Scholar
Kim, H., Zhou, Q., Kim, D. & Oh, I.-K. 2020 Flow-induced snap-through triboelectric nanogenerator. Nano Energy 68, 104379.10.1016/j.nanoen.2019.104379CrossRefGoogle Scholar
Kodio, O., Goriely, A. & Vella, D. 2020 Dynamic buckling of an inextensible elastic ring: linear and nonlinear analyses. Phys. Rev. E 101, 053002.10.1103/PhysRevE.101.053002CrossRefGoogle ScholarPubMed
Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S. & Craighead, H. 2008 The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18 (5), 055026.10.1088/0960-1317/18/5/055026CrossRefGoogle Scholar
Lamb, H. 1945 Hydrodynamics. Dover Publications.Google Scholar
Li, Z., Wang, Y., Foo, C.C., Godaba, H., Zhu, J. & Yap, C.H. 2017 The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer. J. Appl. Phys. 122 (8), 084503.10.1063/1.4985827CrossRefGoogle Scholar
Lighthill, M.J. 1960 Note on the swimming of slender fish. J. Fluid Mech. 9 (2), 305317.10.1017/S0022112060001110CrossRefGoogle Scholar
Liu, M., Gomez, M. & Vella, D. 2021 Delayed bifurcation in elastic snap-through instabilities. J. Mech. Phys. Solids 151, 104386.10.1016/j.jmps.2021.104386CrossRefGoogle Scholar
Munk, M.M. 1924 The aerodynamic forces on airship hulls. NACA Tech. Rep. 814.Google Scholar
Oshri, O. 2021 Volume-constrained deformation of a thin sheet as a route to harvest elastic energy. Phys. Rev. E 103, 033001.10.1103/PhysRevE.103.033001CrossRefGoogle ScholarPubMed
Pandey, A., Moulton, D.E., Vella, D. & Holmes, D.P. 2014 Dynamics of snapping beams and jumping poppers. Europhys. Lett. 105 (2), 24001.10.1209/0295-5075/105/24001CrossRefGoogle Scholar
Peretz, O., Mishra, A.K., Shepherd, R.F. & Gat, A.D. 2020 Underactuated fluidic control of a continuous multistable membrane. Proc. Natl Acad. Sci. USA 117 (10), 52175221.10.1073/pnas.1919738117CrossRefGoogle ScholarPubMed
Preston, D.J., Jiang, H.J., Sanchez, V., Rothemund, P., Rawson, J., Nemitz, M.P., Lee, W.-K., Suo, Z., Walsh, C.J. & Whitesides, G.M. 2019 a A soft ring oscillator. Sci. Robot. 4 (31), eaaw5496.10.1126/scirobotics.aaw5496CrossRefGoogle ScholarPubMed
Preston, D.J., Rothemund, P., Jiang, H.J., Nemitz, M.P., Rawson, J., Suo, Z. & Whitesides, G.M. 2019 b Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116 (16), 77507759.10.1073/pnas.1820672116CrossRefGoogle ScholarPubMed
Rothemund, P., Ainla, A., Belding, L., Preston, D.J., Kurihara, S., Suo, Z. & Whitesides, G.M. 2018 A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3 (16), eaar7986.10.1126/scirobotics.aar7986CrossRefGoogle ScholarPubMed
Sachse, R., Westermeier, A., Mylo, M., Nadasdi, J., Bischoff, M., Speck, T. & Poppinga, S. 2020 Snapping mechanics of the venus flytrap (dionaea muscipula). Proc. Natl Acad. Sci. USA 117 (27), 1603516042.10.1073/pnas.2002707117CrossRefGoogle ScholarPubMed
Saffman, P.G. 1995 Vortex Dynamics. Cambridge University Press.Google Scholar
Schultz, M.R. & Hyer, M.W. 2003 Snap-through of unsymmetric cross-ply laminates using piezoceramic actuators. J. Intell. Mater. Syst. Struct. 14 (12), 795814.10.1177/104538903039261CrossRefGoogle Scholar
Smith, M.L., Yanega, G.M. & Ruina, A. 2011 Elastic instability model of rapid beak closure in hummingbirds. J. Theor. Biol. 282 (1), 4151.10.1016/j.jtbi.2011.05.007CrossRefGoogle ScholarPubMed
Tang, X. & Staack, D. 2019 Bioinspired mechanical device generates plasma in water via cavitation. Sci. Adv. 5 (3), eaau7765.10.1126/sciadv.aau7765CrossRefGoogle ScholarPubMed
Tavakol, B., Bozlar, M., Punckt, C., Froehlicher, G., Stone, H.A., Aksay, I.A. & Holmes, D.P. 2014 Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. Soft Matt. 10, 47894794.10.1039/C4SM00753KCrossRefGoogle ScholarPubMed
Versluis, M., Schmitz, B., von der Heydt, A. & Lohse, D. 2000 How snapping shrimp snap: through cavitating bubbles. Science 289 (5487), 21142117.10.1126/science.289.5487.2114CrossRefGoogle ScholarPubMed
Wolfram Research Inc, . 2018 Mathematica. Version 12.3.Google Scholar
Zhao, X. & Suo, Z. 2010 Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104, 178302.10.1103/PhysRevLett.104.178302CrossRefGoogle ScholarPubMed