Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T04:31:00.907Z Has data issue: false hasContentIssue false

The stability and the nonlinear evolution of quasi-geostrophic hetons

Published online by Cambridge University Press:  25 September 2009

JEAN N. REINAUD*
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
XAVIER CARTON
Affiliation:
Laboratoire de Physique des Océans, UFR Sciences, UBO/UEB, 6, Avenue le Gorgeu, 29200 Brest, France
*
Email address for correspondence: jean@mcs.st-and.ac.uk

Abstract

We analyse the linear stability and nonlinear evolutions of circular hetons under the quasi-geostrophic approximation. We compare results obtained with a three-layer model and with a model based on a continuous density stratification. Though the models also differ by the vertical boundary conditions, they show a remarkable similarity in the stability properties of the hetons (threshold values of vortex radius for baroclinic instability, dominant modes, growth rates, etc.), and in their nonlinear evolutions (spatial reorganization of potential vorticity by nonlinear processes, end-states of the simulations). The hetons prone to baroclinic instability often break into two hetons drifting in opposite directions, and in more hetons, for wider initial structures. In both models, instability is quite sensitive to the vertical gap between the opposite-signed vortices: as it increases, the instability decreases and shifts to lower azimuthal modes. Finally, though modes l ≥ 2 (i.e. elliptical and shorter wave deformations) prevail in most of the parameter space, the mode l = 1 perturbation (a vertical tilt of the vortex column) exists for hetons with small vertical gaps. Such perturbations are concentrated vertically near the gap, and can only be evidenced in the continuously stratified model.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baey, J. & Carton, X. 2002 Vortex multipoles in two-layer rotating shallow-water flows. J. Fluid Mech. 460, 151175.Google Scholar
Bambrey, R. R., Reinaud, J. N. & Dritschel, D. G. 2007 Strong interactions between two co-rotating quasi-geostrophic vortices. J. Fluid Mech. 592, 117133.Google Scholar
Bane, J., O'Keefe, L. & Watts, D. 1999 Mesoscale eddies and submesoscale coherent vortices: their existence near and interactions with the gulf-stream. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence; Proceedings of the 20th International Liege Colloquium on Ocean Hydrodynamics, pp. 501518. Elsevier.Google Scholar
Carton, x., Chérubin, L., Paillet, J., Morel, Y., Serpette, A. & Le Cann, B. 2002 Meddy coupling with a deep cyclone in the gulf of cadiz. J. Mar. Syst. 32, 1342.CrossRefGoogle Scholar
Carton, X. & Corréard, S. 1999 Baroclinic tripolar geostrophic vortices. In Proceedings of the IUTAM Symposium “Simulation and Identification of Organized Structures in Flows”, pp. 181190. Kluwer Academic Publishers.Google Scholar
Corréard, S. & Carton, X. 1999 Vertical alignment of geostrophic vortices: on the influence of the initial distribution of potential vorticity. In Proceedings of the IUTAM Symposium “Simulation and Identification of Organized Structures in Flows“, pp. 191200. Kluwer Academic Publishers.CrossRefGoogle Scholar
Deem, G. & Zabusky, N. 1978 Vortex waves: stationary “v states”, interactions, recurrence and breaking. Phys. Rev. Lett. 40, 859862.CrossRefGoogle Scholar
Dewar, W. & Gailliard, C. 1994 The dynamics of barotropically dominated rings. J. Phys. Ocenogr. 24, 529.2.0.CO;2>CrossRefGoogle Scholar
Dritschel, D. 1986 The nonlinear evolution or rotating configurations of uniform vorticity. J. Fluid Mech. 172, 157182.CrossRefGoogle Scholar
Dritschel, D. G. 2002 Vortex merger in rotating stratified flows. J. Fluid Mech. 455, 83101.CrossRefGoogle Scholar
Dritschel, D. G. & Ambaum, M. H. P. 1997 A contour-advective semi-Lagrangian algorithm for the simulation of fine-scale conservative fields. Q. J. R. Met. Soc. 123, 10971130.Google Scholar
Dritschel, D. G. & de la Torre Juárez, M. 1996 The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid. J. Fluid Mech. 328, 129160.CrossRefGoogle Scholar
Dritschel, D. & Waugh, D. 1992 Quantification of the inelastic interaction of two asymmetric vortices in two-dimensional vortex dynamics. Phys. Fluids A 4, 17371744.CrossRefGoogle Scholar
Flierl, G. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 339388.CrossRefGoogle Scholar
Griffiths, R. & Hopfinger, E. 1987 Coalescing of geostrophic vortices. J. Fluid Mech. 178, 7397.Google Scholar
vonHardenberg, J. Hardenberg, J., McWilliams, J. C., Provenzale, A., Shchpetkin, A. & Weiss, J. B. 2000 Vortex merging in quasi-geostrohic flows. J. Fluid Mech. 412, 331353.Google Scholar
Helfrich, K. & Send, U. 1988 Finite-amplitude evolution of two-layer geostrophic vortices. J. Fluid Mech. 197, 331348.Google Scholar
Hogg, N. G. & Stommel, H. M. 1985 The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat flow. Proc. R. Soc. Lond. A 397, 120.Google Scholar
Melander, M., Zabusky, N. & McWilliams, J. 1987 Asymmetric vortex merger in two dimension: which vortex is “victorious”? Phys. Fluids A 30, 26102612.CrossRefGoogle Scholar
Melander, M., Zabusky, N. & McWilliams, J. 1988 Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303340.CrossRefGoogle Scholar
Miyazaki, T., Yamamoto, M. & Fujishima, S. 2003 Counter-rotating quasigeostrophic ellipsoidal vortex pair. J. Phys. Soc Jpn. 72 (8), 19421953.Google Scholar
Overman, E. & Zabusky, N. 1982 Evolution and merger of isolated vortex structures. Phys. Fluids 25, 12971305.Google Scholar
Ozugurlu, E., Reinaud, J. N. & Dritschel, D. G. 2008 Interaction between two quasi-geostrophic vortices of unequal potential-vorticity. J. Fluid Mech. 597, 395414.Google Scholar
Polvani, L. 1991 Two-layer geostrophic vortex dynamics. Part 2. Alignment and two-layer v-states. J. Fluid Mech. 225, 241270.CrossRefGoogle Scholar
Polvani, L., Zabusky, N. & Flierl, G. 1989 Two-layer geostrophic vortex dynamics. Part 1. Upper-layer v-states and merger. J. Fluid Mech. 205, 215242.CrossRefGoogle Scholar
Reinaud, J. N. & Dritschel, D. G. 2002 The merger of vertically offset quasi-geostrophic vortices. J. Fluid Mech. 469, 287315.Google Scholar
Reinaud, J. N. & Dritschel, D. G. Submitted Destructive interactions between two counter-rotating quasi-geostrophic vortices. J. Fluid Mech.Google Scholar
Robinson, A. 1983 Eddies in Marine Science. Springer Verlag.CrossRefGoogle Scholar
Serra, N., Ambar, I. & Käse, R. 2005 Observations and numerical modelling of the mediterranean outflow splitting and eddy generation. Deep-Sea Res. 52, 383408.Google Scholar
Sokolovskiy, M. 1997 Stability of an axisymmetric three-layer vortex. Izvestiya, Atmospheric Oceanic Phys. 33, 1626.Google Scholar
Sokolovskiy, M. & Verron, J. 2000 Finite-core hetons: stability and interactions. J. Fluid Mech. 423, 127154.Google Scholar
Valcke, S. & Verron, J. 1993 On interactions between two finite-core hetons. Phys. Fluids, A 5, 20582060.Google Scholar
Vallis, C. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.CrossRefGoogle Scholar
Verron, J., Hopfinger, E. & McWilliams, J. 1990 Sensitivity to initial conditions in the merging of two-layer baroclinic vortices. Phys. Fluids A 2, 886889.Google Scholar
Verron, J. & Valcke, S. 1994 Scale-dependent merging of baroclinic vortices. J. Fluid Mech. 264, 81106.Google Scholar
Viera, F. 1995 On the alignment and axisymmetrization of a vertically-tilted geostrophic vortex. J. Fluid Mech. 289, 2950.CrossRefGoogle Scholar
Yasuda, I. & Flierl, G. 1995 Two-dimensional asymmetric vortex merger: contour dynamics experiments. J. Oceanogr. 51, 145170.Google Scholar
Yasuda, I. & Flierl, G. 1997 Two-dimensional asymmetric vortex merger: merger dynamics and critical merger distance. Dyn. Atmos. Oceans 26, 159181.Google Scholar