Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-31T17:21:11.942Z Has data issue: false hasContentIssue false

An automated faecal egg count system for detection of Ascaridia galli ova in chickens

Published online by Cambridge University Press:  27 August 2024

J.L. Cain
Affiliation:
Parasight System, Inc., Suite 2130, Lexington, Kentucky, USA
D. Wilson
Affiliation:
Wilson Veterinary Co., Needham, Indiana, USA
P. Slusarewicz*
Affiliation:
Parasight System, Inc., Suite 2130, Lexington, Kentucky, USA
*
Corresponding author: P. Slusarewicz; Email: pslusarewicz@parasightsystem.com

Abstract

Chicken production has increased over the past decade, resulting in a concomitant rise in the demand for more humane options for poultry products including cage-free, free-range, and organic meat and eggs. These husbandry changes, however, have come hand-in-hand with increased prevalence of Ascaridia galli infection, which can cause clinical disease in chickens as well as the occasional appearance of worms in eggs. Additionally, development of anthelmintic resistance in closely related helminths of turkeys highlights the need for closely monitored anthelmintic treatment programs. Manual faecal egg counts (FECs) can be time-consuming and require specialist training. As such, this study sought to validate an automated FEC system for use in detection and quantification of A. galli eggs in chicken faeces. Automated counts using the Parasight System (PS) were compared to traditional manual McMaster counting for both precision and correlation between methods. Overall, ten repeated counts were performed on twenty individual samples for a total of 200 counts performed for each method. A strong, statistically significant correlation was found between methods (R2 = 0.7879, P < 0.0001), and PS counted more eggs and performed with statistically significant higher precision (P = 0.0391) than manual McMaster counting. This study suggests that PS is a good alternative method for performing A. galli FECs and provides a new tool for use in helminth treatment and control programs in chicken operations.

Type
Research Paper
Copyright
© Parasight System Inc., 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleby, MC (2003). The European Union ban on conventional cages for laying hens: History and prospects. Journal of Applied Animal Welfare Science 6, 103121.CrossRefGoogle ScholarPubMed
Bautista-Vanegas, AL, Esteban-Mendoza, MV, Cala-Delgado, D (2023). Ascaridia galli: A report of erratic migration in eggs for human consumption in Bucaramanga, Colombia – case report. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 75, 122126. https://doi.org/10.1590/1678-4162-12818CrossRefGoogle Scholar
Britton, L, Ripley, B, Slusarewicz, P (2024). Relative egg extraction efficiencies of manual and automated fecal egg count methods in equines. Helminthologia 61, 2029. https://doi.org/10.2478/helm-2024-0007CrossRefGoogle ScholarPubMed
Cain, JL, Peters, KT, Suri, P, Roher, A, Rutledge, MH, Nielsen, MK (2021). The effect of analyst training on fecal egg counting variability. Parasitology Research 120, 13631370. https://doi.org/10.1007/s00436-021-07074-2CrossRefGoogle ScholarPubMed
Cain, JL, Slusarewicz, P, Rutledge, MH, McVey, MR, Wielgus, KM, Zynda, HM, Wehling, LM, Scare, JA, Steuer, AE, Nielsen, MK (2020). Diagnostic performance of McMaster, Wisconsin, and automated egg counting techniques for enumeration of equine strongyle eggs in fecal samples. Veterinary Parasitology 284, 109199. https://doi.org/10.1016/j.vetpar.2020.109199CrossRefGoogle ScholarPubMed
Collins, JB, Jordan, B, Baldwin, L, Hebron, C, Paras, K, Vidyashankar, AN, Kaplan, RM (2019). Resistance to fenbendazole in Ascaridia dissimilis, an important nematode parasite of turkeys. Poultry Science 98, 54125415. https://doi.org/10.3382/ps/pez379CrossRefGoogle ScholarPubMed
Collins, JB, Jordan, B, Vidyashankar, A, Bishop, A, Kaplan, RM (2022). Fenbendazole resistance in Heterakis gallinarum, the vector of Histomonas meleagridis, on a broiler breeder farm in South Carolina. Veterinary Parasitology: Regional Studies and Reports 36, 100785. https://doi.org/10.1016/j.vprsr.2022.100785Google ScholarPubMed
Cringoli, G, Amadesi, A, Maurelli, MP, Celano, B, Piantadosi, G, Bosco, A, Ciuca, L, Cesarelli, M, Bifulco, P, Montresor, A, Rinaldi, L (2021). The Kubic FLOTAC microscope (KFM): A new compact digital microscope for helminth egg counts. Parasitology 148, 427434. https://doi.org/10.1017/S003118202000219XCrossRefGoogle ScholarPubMed
Gordon, HM, Whitlock, HV (1939). A new technique for counting nematode eggs in sheep faeces. Journal of the Council for Scientific and Industrial Research 12, 52.Google Scholar
Höglund, J, Jansson, DS (2011). Infection dynamics of Ascaridia galli in non-caged laying hens. Veterinary Parasitology 180, 267273. https://doi.org/10.1016/j.vetpar.2011.03.031CrossRefGoogle ScholarPubMed
Ibarburu, M (2016). U.S. Flock Trends and Projections. Available at: https://www.eggindustrycenter.org/browse/files/f56da2c1589e4ada8f78a7816ac96cd7/download (accessed 16 May 2023).Google Scholar
Kaplan, RM, Denwood, MJ, Nielsen, MK, Thamsborg, SM, Torgerson, PR, Gilleard, JS, Dobson, RJ, Vercruysse, J, Levecke, B (2023). World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guideline for diagnosing anthelmintic resistance using the faecal egg count reduction test in ruminants, horses and swine. Veterinary Parasitology 318, 109936. https://doi.org/10.1016/j.vetpar.2023.109936CrossRefGoogle ScholarPubMed
Nagamori, Y, Hall Sedlak, R, DeRosa, A, Pullins, A, Cree, T, Loenser, M, Larson, BS, Smith, RB, Goldstein, R (2020). Evaluation of the VETSCAN IMAGYST: An in-clinic canine and feline fecal parasite detection system integrated with a deep learning algorithm. Parasites & Vectors 13, 346. https://doi.org/10.1186/s13071-020-04215-xCrossRefGoogle ScholarPubMed
Nagamori, Y, Sedlak, RH, DeRosa, A, Pullins, A, Cree, T, Loenser, M, Larson, BS, Smith, RB, Penn, C, Goldstein, R (2021). Further evaluation and validation of the VETSCAN IMAGYST: In-clinic feline and canine fecal parasite detection system integrated with a deep learning algorithm. Parasites & Vectors 14, 89. https://doi.org/10.1186/s13071-021-04591-yCrossRefGoogle ScholarPubMed
Nielsen, MK (2021). What makes a good fecal egg count technique? Veterinary Parasitology 296, 109509. https://doi.org/10.1016/j.vetpar.2021.109509CrossRefGoogle ScholarPubMed
Noel, ML, Scare, JA, Bellaw, JL, Nielsen, MK (2017). Accuracy and precision of Mini-FLOTAC and McMaster techniques for determining equine strongyle egg counts. Journal of Equine Veterinary Science 48, 182187.e1. https://doi.org/10.1016/j.jevs.2016.09.006CrossRefGoogle Scholar
Permin, A, Bisgaard, M, Frandsen, F, Pearman, M, Kold, J, Nansen, P (1999). Prevalence of gastrointestinal helminths in different poultry production systems. British Poultry Science 40, 439443. https://doi.org/10.1080/00071669987179CrossRefGoogle ScholarPubMed
Piergili Fioretti, D, Veronesi, F, Diaferia, M, Pia Franciosini, M, Casagrande Proietti, P (2005). Ascaridia galli: A report of erratic migration. Italian Journal of Animal Science 4, 310312. https://doi.org/10.4081/ijas.2005.310CrossRefGoogle Scholar
R Core Team (2024). R: A language and environment for statistical computing. Available at https://www.R-project.org/ (accessed 15 April 2024).Google Scholar
Scare, JA, Slusarewicz, P, Noel, ML, Wielgus, KM, Nielsen, MK (2017). Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini-FLOTAC methods. Veterinary Parasitology 247, 8592. https://doi.org/10.1016/j.vetpar.2017.10.005CrossRefGoogle Scholar
Shifaw, A, Feyera, T, Walkden-Brown, SW, Sharpe, B, Elliott, T, Ruhnke, I (2021). Global and regional prevalence of helminth infection in chickens over time: A systematic review and meta-analysis. Poultry Science 100, 101082. https://doi.org/10.1016/j.psj.2021.101082CrossRefGoogle Scholar
Slusarewicz, M, Slusarewicz, P, Nielsen, MK (2019). The effect of counting duration on quantitative fecal egg count test performance. Veterinary Parasitology 276, 100020. https://doi.org/10.1016/j.vpoa.2019.100020CrossRefGoogle Scholar
Slusarewicz, P, Pagano, S, Mills, C, Popa, G, Chow, KM, Mendenhall, M, Rodgers, DW, Nielsen, MK (2016). Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. International Journal for Parasitology 46, 485493. https://doi.org/10.1016/j.ijpara.2016.02.004CrossRefGoogle ScholarPubMed
Tarbiat, B, Jansson, DS, Höglund, J (2022). Implementation of a targeted treatment strategy for the sustainable control of Ascaridia galli infections in laying hens. VetRecord Open 9, e37. https://doi.org/10.1002/vro2.37Google ScholarPubMed
Tarbiat, B, Jansson, DS, Tydén, E, Höglund, J (2016). Comparison between anthelmintic treatment strategies against Ascaridia galli in commercial laying hens. Veterinary Parasitology 226, 109115. https://doi.org/10.1016/j.vetpar.2016.07.006CrossRefGoogle ScholarPubMed
Torgerson, PR, Paul, M, Lewis, FI (2012). The contribution of simple random sampling to observed variations in faecal egg counts. Veterinary Parasitology 188, 397401. https://doi.org/10.1016/j.vetpar.2012.03.043CrossRefGoogle ScholarPubMed
van Horne, P (2018). Global egg production continues to grow. Available at https://www.internationalegg.com/resource/global-egg-production-continues-to-grow/ (accessed 01 May 2024).Google Scholar
Went, HA, Scare, JA, Steuer, AE, Nielsen, MK (2018). Effects of homogenizing methods on accuracy and precision of equine strongylid egg counts. Veterinary Parasitology 261, 9195. https://doi.org/10.1016/j.vetpar.2018.09.001CrossRefGoogle ScholarPubMed
Windhorst, HW (2017). Dynamics and patterns of the EU egg industry. Available at https://lohmann-breeders.com/lohmanninfo/dynamics-and-patterns-of-the-eu-egg-industry/ (accessed 15 March 2024).Google Scholar
Yazwinski, TA, Tucker, CA, Wray, E, Jones, L, Clark, FD (2013). Observations of benzimidazole efficacies against Ascaridia dissimilis, Ascaridia galli, and Heterakis gallinarum in naturally infected poultry. Journal of Applied Poultry Research 22, 7579. https://doi.org/10.3382/japr.2012-00606CrossRefGoogle Scholar