Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-24T13:18:03.207Z Has data issue: false hasContentIssue false

Enzyme analyses of natural populations of Schistocephalus solidus and Ligula intestinalis

Published online by Cambridge University Press:  05 June 2009

D. P. McManus
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science and Technology, London SW7 2BB, UK

Abstract

Results are reported of enzyme analyses, following isoelectric focusing (IEF) in polyacrylamide gels, of Plerocercoids of the pseudophyllidean cestodes Ligula intestinalis and Schistocephalus solidus. No polymorphic variants were detectable for the enzymes lactate dehydrogenase (LDH), malate dehydrogenase(MDH), glucose phosphate isomerase (GPI) or phosphoglucomutase (PGM) in 34 individuals of S. solidus. Similarly, no variants were observed in LDH, MDH or GPI of 159 individuals of L. intestinalis collected from four cyprinid fish species from several locations in southern England. In contrast, PGM of L. intestinalis is Polymorphic. The enzyme appears to be controlled by three loci and one of these loci, designated PGM-2, is Polymorphic with three recognizable phenotypes. The polymorphism is not related to the species orgeographical origin of infected fish and it does not reflect strain variation in L. intestinalis. Instead, it is typical of a genetic polymorphism under the control of two co-dominant alleles. Such a balanced polymorphism requires that cross-fertilization must occur, at least transiently, in L. intestinalis. The work indicates that enzymes can be used as markers in future genetic studies with cestodes, and that the combination of IEF and zymogram analysis represents an important method for the detection of cross-fertilization in these worms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agatsuma, T. (1981) Electrophoretic demonstration of polymorphism of glucosephosphate isomerase in natural populations of Paragonimus miyazakii. Journal of Parasitology, 67, 454456.CrossRefGoogle ScholarPubMed
Arme, C. (1975) Tapeworm-host interactions. Symposia of the Society for Experimental Biology, 29, 505532.Google Scholar
Arme, C. & Owen, R. W. (1968) Occurrence and pathology of Ligula intestinalis infections in British fishes. Journal of Parasitology, 54, 272280.CrossRefGoogle ScholarPubMed
Bråten, T. (1969) Host specificity in Schistocephalus solidus. Parasitology, 56, 657664.CrossRefGoogle Scholar
Brown, D. S., Sarfati, C., Southgate, V. R., Ross, G. C. & Knowles, R. J. (1984) Observations On Schistosoma intercalatum in south-east Gabon. Zeitschrift für Parasitenkunde, 70, 243253.CrossRefGoogle ScholarPubMed
Fletcher, M., Loverde, P. T. & Woodruff, D. S. (1981) Genetic variation in Schistosoma mansoni: enzyme polymorphisms in populations from Africa, South West Asia, South America and the West Indies. American Journal of Tropical Medicine and Hygiene, 30, 406421.CrossRefGoogle Scholar
Flockhart, H. A. (1979) Ligula intestinalis (L. 1758)—in vivo and in vitro studies. Ph.D. thesis, University of London.Google Scholar
Harris, H. (1975) Principles of Human Biochemical Genetics. 2nd edit. North Holland: Amsterdam.Google Scholar
Harris, H. & Hopkinson, D. A. (1976) Handbook of Enzyme Electrophoresis in Human Genetics. North Holland: Amsterdam.Google Scholar
Harris, M. T. & Wheeler, A. (1974) Ligula infections of bleak Alburnus alburnus (L.) in the tidal Thames. Journal of Fish Biology, 6, 181188.CrossRefGoogle Scholar
Howell, M. J. (1976) The peritoneal cavity of vertebrates. In: Ecological Aspects of Parasitology. (Editor, Kennedy, C. R.) pp. 243268. North Holland: Amsterdam.Google Scholar
Hubby, J. L. & Lewontin, R. C. (1966) A molecular approach to the study of genie heterozygosity in natural populations. 1. The number of alleles at different loci in Drosophila pseudoobscura. Genetics, 54,577594.Google Scholar
Kennedy, C. R. & Burrough, R. J. (1981) The establishment and subsequent history of a population of Ligula intestinalis in roach Rutilus rutilus (L.). Journal of Fish Biology, 19, 105126.CrossRefGoogle Scholar
Kimura, M. & Ohta, T. (1971) Protein polymorphism as a phase of molecular evolution. Nature, 229, 467469.CrossRefGoogle ScholarPubMed
Kuhnl, P., Schmidtmann, U. & Spielmann, W. (1977) Evidence for two additional common alleles at the PGM1 locus (Phosphoglucomutase E.C.2.7.5.1). Human Genetics, 35, 219223.CrossRefGoogle ScholarPubMed
Leslie, F. L, Cain, G. D., Meffe, G. K. & Vrijenhoek, R. C. (1982) Enzyme polymorphism in Ascaris suum (Nematoda). Journal of Parasitology, 68, 576587.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1974) The Genetic Basis of Evolutionary Change. Columbia University Press: New York.Google Scholar
Lewontin, R. C. & Hubby, J. L. (1966) A molecular approach to the study of genie heterozygosity in natural populations. 2. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics, 54, 595609.CrossRefGoogle Scholar
Lowry, D. H., Rosebrough, N. J, Farr, A. L. & Randall, R. J. (1951) Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265275.CrossRefGoogle ScholarPubMed
Mcmanus, D. P. & Smyth, J. D. (1979) Isoelectric focusing of some enzymes from Echinococcus granulosus (horse and sheep strains) and E. multilocularis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 73, 259265.CrossRefGoogle ScholarPubMed
Mcmanus, D. P. & Sterry, P. R. (1979) Isoenzyme studies on Ligula intestinalis (Cestoda: Pseudophyllidea). Parasitology, 79, XLIV.Google Scholar
Macpherson, C. N. L. & Mcmanus, D. P. (1982) Strain differentiation of Echinococcus granulosus from Kenya using isoelectric focusing. International Journal for Parasitology, 12, 515521.CrossRefGoogle Scholar
Markert, C. L. (1975) Isozymes. Academic Press: London & New York.Google ScholarPubMed
Moss, D. W. (1982) Isoenzymes. Chapman and Hall: London and New York.CrossRefGoogle ScholarPubMed
Nollen, P. M. (1975) Studies on the reproductive system of Hymenolepis diminuta using autoradiography and transplantation. Journal of Parasitology, 61, 100124.CrossRefGoogle ScholarPubMed
Nollen, P. M. (1983) Patterns of sexual reproduction among parasitic platyhelminths. Parasitology, 86, 99120.CrossRefGoogle ScholarPubMed
Ohno, S. (1970) Evolution by gene duplication. Springer-Verlag: New York.CrossRefGoogle Scholar
Orr, T. S. C. (1967) Studies ofLigula intestinalis (Linnaeus, 1758). Ph.D. thesis, University of London.Google Scholar
Oxford, G. S. & Rollinson, D. (1983) Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press: London.Google Scholar
Price, P. W. (1977) General concepts on the evolutionary biology of parasites. Evolution, 31, 405420.CrossRefGoogle ScholarPubMed
Price, P. W. (1980) Evolutionary Biology of Parasites. Princeton University Press: Princeton, New Jersey, USA.Google ScholarPubMed
Rattazzi, M. C., Scandalios, J. G. & Whitt, G. S. (1979) Isozymes. Alan R. Liss Inc.: New York.Google Scholar
Smithies, D. (1955) Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. Biochemical Journal, 61, 629641.CrossRefGoogle ScholarPubMed
Smyth, J. D. (1954) Studies on tapeworm physiology VII. Fertilizations of Schistocephalus solidus in vitro. Experimental Parasitology, 3, 6471.CrossRefGoogle ScholarPubMed
Smyth, J. D. (1959) Maturation of larval pseudophyllidean cestodes and strigeid trematodes under axenic conditions; the significance of nutritional levels in platyhelminth development. Annals of New York Academy of Sciences, 77, 102125.CrossRefGoogle Scholar
Smyth, J. D. (1976) Introduction to Animal Parasitology (2nd edit.) Hodder and Stoughton: London, Sydney, Auckland and Toronto.Google Scholar
Smyth, J. D. (1982) The insemination-fertilization problem in cestodes cultured in vitro. In: Aspects of Parasitology (editor, Meerovitch, E.) pp. 392406. Institute of Parasitology, McGill University, Montreal.Google Scholar
Smyth, J. D. & Smyth, M. M. (1969) Self-insemination in Echinococcus granulosus in vitro. Journal of Helminthology, 43, 383388.CrossRefGoogle Scholar
Spencer, N., Hopkinson, D. A. & Harris, H. (1964) Phosphoglucomutase polymorphism in man. Nature, 204, 742745.CrossRefGoogle ScholarPubMed
Sutton, J. G. & Burgess, R. (1978) Genetic evidence for four common alleles at the phosphoglucomutase-1 locus (PGM) detectable by isoelectric focusing. Vox Sanguinis, 34,97103.Google Scholar
Thompson, R. C. A. (1982) Intraspecific variation and parasite epidemiology. In: Parasites—their World and Ours (editors, Mettrick, D. F. & Desser, S. S.) pp. 369378. Elsevier Biomedical Press: Amsterdam, New York & Oxford.Google Scholar
Vrijenhoek, R. C. (1978) Genetic differentiation among larval nematodes infecting fish. Journal of Parasitology, 64, 790798.CrossRefGoogle Scholar
Williams, H. H. & Mcvicar, A. (1968) Sperm transfer in Tetraphyllidea. (Platyhelminthes: Cestoda). Nytt Magasinfor Zoologi, 16, 6171.Google Scholar
Wright, C. A. & Ross, G. C. (1983) Enzyme analysis of Schistosoma haematobium. Bulletin of the World Health Organization, 61, 307316.Google ScholarPubMed
Zee, D. S., Isensee, H. & Zinkham, W. H. (1970) Polymorphism of malate dehydrogenase in Ascaris suum. Biochemical Genetics, 4, 253257.CrossRefGoogle ScholarPubMed