Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-31T23:15:28.675Z Has data issue: false hasContentIssue false

Evaluation of the therapeutic effect of Olibanum extract against enteric and intramuscular phases of trichinosis in experimentally infected mice

Published online by Cambridge University Press:  26 May 2023

A.M. Matar*
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia, 6132720, Egypt
M.A. Kora
Affiliation:
Department of Pathology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia, 6132720, Egypt
S.S. Shendi
Affiliation:
Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin al-Kom, Menoufia, 6132720, Egypt
*
Corresponding author: Amira M. Matar; Email: amira.matar@med.menofia.edu.eg

Abstract

Trichinosis is a global food-borne zoonotic disease. Most drugs used in its treatment have low bioavailability and reduced activity against larvae. Therefore, there is an urgent need for safe and effective medications. This study aimed to investigate the in vivo anti-parasitic and anti-inflammatory efficacy of olibanum (OL) extract, alone or combined with albendazole (ABZ) during both intestinal and muscular phases of trichinosis. Male Swiss albino mice (n = 130) were allocated to seven groups, with 20 mice in each group except for the negative control group (10 mice): negative control (GI), positive control (GII), OL25- treated (GIII), OL50- treated (GIV), ABZ50- treated (GV), OL25 + ABZ25 (GVI), and OL50 + ABZ25 (GVII). For intestinal and muscular phase analysis, each group was divided into two subgroups based on euthanizing day (6 and 35 days post-infection). The drug’s efficacy was evaluated through parasitological, biochemical, histopathological, and immunohistochemical studies. OL extract at both concentrations (25 mg/kg/d, 50 mg/kg/d) significantly reduced adult (53.7% and 68.1%, respectively) and larval counts (57.3% and 78.8%, respectively). It improved the histopathological changes in intestine and muscle. The expression of CD8+ T cells and the serum level of IL-10 increased significantly during both intestinal and muscular phases (P < 0.05) in OL50 treated mice. Additionally, OL decreased abnormal levels of liver enzymes (ALT & AST). Its effects were dose-dependent in both adult and larval stages. In conclusion, OL exhibits promising in vivo activity against both stages of Trichinella spiralis infection, particularly at the intramuscular phase. It can be safe as an alternative treatment for trichinosis.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-Elrahman, SM, Dyab, AK, Mahmoud, AE, Mostafa, SM, Elossily, NA (2020). Antiparasitic activity of myrrh crude extract and myrrh volatile oil compared to albendazole against Trichinella spiralis muscular larvae in vitro. Journal of Egyptian Society of Parasitology 50, 2, 307314.CrossRefGoogle Scholar
Abdalla, SF, Ramadan, NI, Mohamed, AA, El-Deeb, HK, Al-Khadrawy, FM, Badawy, AF (2011). A study on the effect of Myrtus communis and Olibanum on Giardia lamblia infection in Egypt. Parasitologists United Journal 4, 1, 89100.Google Scholar
Abou Rayia, DM, Saad, AE, Ashour, DS, Oreiby, RM (2017). Implication of artemisinin nematocidal activity on experimental trichinellosis: in vitro and in vivo studies. Parasitology International 66, 2, 5663. https://doi.org/10.1016/j.parint.2016.11.012CrossRefGoogle ScholarPubMed
Abuelenain, GL, Fahmy, ZH, Elshennawy, AM, Fahmy, AM, Ali, EM, Hammam, O, Abdel-Aziz, AWA (2021). The potency of Lepidium sativum and Commiphora molmol extracts on Trichinella spiralis stages and host interaction. Advances in Animal and Veterinary Science 9, 13761382. https://doi.org/10.17582/journal.aavs/2021/9.9.1376.1382CrossRefGoogle Scholar
Aeffner, F, Wilson, K, Martin, NT, Black, JC, CLL, Hendriks, Bolon, B, Rudmann, DG, Gianani, R, Koegler, SR, Krueger, J, Young, GD (2017). The Gold standard paradox in digital image analysis: manual versus automated scoring as ground truth. Archives of Pathology and Laboratory Medecine 141, 9, 12671275. https://doi.org/10.5858/arpa.2016-0386-RACrossRefGoogle ScholarPubMed
Al-Ghandour, AM, Ahmed, HK, Salem, A, Tealeb, AM, Mohamed, RM, Yousef, AM (2020). Efficacy of olibanum and propolis medicinal extracts versus metronidazole in Giardia lamblia experimentally infected mice. Microbes and Infectious Diseases 1, 3, 209220. https://doi.org/10.21608/MID.2020.47108.1075CrossRefGoogle Scholar
Ali, EN, Mansour, SZ (2011). Boswellic acids extract attenuates pulmonary fibrosis induced by bleomycin and oxidative stress from gamma irradiation in rats. Chinese Medicine 6, 36. https://doi.org/10.1186/1749-8546-6-36CrossRefGoogle ScholarPubMed
Allam, AF, Mostafa, RA, Lotfy, W, Farag, HF, Fathi, N, Moneer, EA, Shehab, AY (2021). Therapeutic efficacy of mebendazole and artemisinin in different phases of trichinellosis: a comparative experimental study. Parasitology 148, 5, 630635. https://doi.org/10.1017/S0031182021000056CrossRefGoogle ScholarPubMed
Ammon, HPT (2010). Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine 17, 11, 862867. https://doi.org/10.1016/j.phymed.2010.03.003CrossRefGoogle ScholarPubMed
Ammon, HPT (2016). Boswellic acids and their role in chronic inflammatory diseases. Advances in Experimental Medicine and Biology 928, 291327. https://doi.org/10.1007/978-3-319-41334-1_13CrossRefGoogle ScholarPubMed
Arise, RO, Malomo, SO (2009). Effects of ivermectin and albendazole on some liver and kidney function indices in rats. African Journal of Biochemistry Research 3, 5, 190197.Google Scholar
Ashour, DS, Abou Rayia, DM, Saad, AE, El-Bakary, RH (2016). Nitazoxanide anthelmintic activity against the enteral and parenteral phases of trichinellosis in experimentally infected rats. Experimental Parasitology 170, 2835. https://doi.org/10.1016/j.exppara.2016.08.009CrossRefGoogle ScholarPubMed
Attia, RA, Mahmoud, AE, Farrag, HM, Makboul, R, Mohamed, ME, Ibraheim, Z (2015). Effect of myrrh and thyme on Trichinella spiralis enteral and parenteral phases with inducible nitric oxide expression in mice. Memórias do Instituto Oswaldo Cruz 110, 10351041. https://doi.org/10.1590/0074-02760150295CrossRefGoogle ScholarPubMed
Bahnassy, AA, Zekri, AR, El-Houssini, S, El-Shehaby, AM, Mahmoud, MR, Abdallah, S, El-Serafi, M (2004). Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients, BMC Gastroenterology 4, 22. https://doi.org/10.1186/1471-230X-4-22CrossRefGoogle ScholarPubMed
Bakir, HY, Attia, RAH, Mahmoud, AE, Ibraheim, Z (2017). M-RNA gene expression of INF-Γ and IL-10 during intestinal phase of Trichinella spiralis after myrrh and albendazole treatment. Iranian Journal of Parasitology 12, 2, 188195.Google ScholarPubMed
Basyoni, MM, El-Sabaa, AA (2013). Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean Journal of Parasitology 51, 3, 297304. https://doi.org/10.3347/kjp.2013.51.3.297CrossRefGoogle ScholarPubMed
Beiting, DP, Bliss, SK, Schlafer, DH, Roberts, VL, Appleton, JA (2004). Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infection and Immunity 72, 6, 31293137, https://doi.org/10.1128/IAI.72.6.3129-3137.2004CrossRefGoogle ScholarPubMed
Borrelli, F, Capasso, F, Capasso, R, Ascione, V, Aviello, G, Longo, R, Izzo, AA (2006). Effect of Boswellia serrata on intestinal motility in rodents: inhibition of diarrhoea without constipation. British Journal of Pharmacology 148, 4, 553560. https://doi.org/10.1038/sj.bjp.0706740CrossRefGoogle ScholarPubMed
Caner, A, Döşkaya, M, Değirmenci, A, Can, H, Baykan, S, Uner, A, Başdemir, G, Zeybek, U, Gürüz, Y (2008). Comparison of the effects of Artemisia vulgaris and Artemisia, absinthium growing in western Anatolia against trichinellosis (Trichinella spiralis) in rats. Experimental Parasitology 119, 1, 173179. https://doi.org/10.1016/j.exppara.2008.01.012CrossRefGoogle ScholarPubMed
Chevrier, MR, Ryan, AE, Lee, DY, Zhongze, M, Wu-Yan, Z, Via, CS (2005). Boswellia carterii extract inhibits TH1 cytokines and promotes TH2 cytokines in vitro. Clinical and Vaccine Immunology 12, 5, 575580. https://doi.org/10.1128/CDLI.12.5.575-580.2005CrossRefGoogle ScholarPubMed
Dunn, IJ, Wright, KA (1985). Cell injury caused by Trichinella spiralis in the mucosal epithelium of B10A mice. The Journal of Parasitology 71, 6, 757766.CrossRefGoogle ScholarPubMed
Dvorožňáková, E, Hurníková, Z, Kołodziej-Sobocińska, M (2011). Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae. Parasitology Research 108, 1, 169176 https://doi.org/10.1007/s00436-010-2049-xCrossRefGoogle ScholarPubMed
Effertha, T, Oesch, F (2020). Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Seminars in Cancer Biology, https://doi.org/10.1016/j.semcancer.2020.01.015CrossRefGoogle Scholar
Elgendy, DI, Othman, AA, Hasby Saad, MA, Soliman, NA, Mwafy, SE (2020). Resveratrol reduces oxidative damage and inflammation in mice infected with Trichinella spiralis. Journal of Helminthology 94, e140 1–10. https://doi.org/10.1017/S0022149X20000206CrossRefGoogle ScholarPubMed
Elguindy, DA, Ashour, DS, Shamloula, MM, Aboul Assad, IA (2019). Preliminary study on the role of toll-like receptor-4 antagonist in treatment of Trichinella spiralis infection. Tanta Medical Journal 47, 2, 5261. https://doi.org/10.4103/tmj.tmj_17_18CrossRefGoogle Scholar
Eltahir, HM, Fawzy, MA, Mohamed, EM, Alrehany, MA, Shehata, AM, Abouzied, MM (2020). Antioxidant, anti-inflammatory and anti-fibrotic effects of Boswellia serrate gum resin in CCl(4)-induced hepatotoxicity. Experimental and Therapeutic Medicine 19, 2, 13131321. https://doi.org/10.3892/etm.2019.8353Google ScholarPubMed
Esmat, M, Abdel-Aal, AA, Shalaby, MA, Fahmy, MEA, Badawi, MAM, Elmallawany, MA, Magdy, M, Afife, AA, Shafi, IRA (2021). Punica granatum and amygdalin extracts plus cobalamin combined with albendazole reduce larval burden and myositis in experimental trichinosis. Revista Brasileira de Parasitologia Veterinária 30, 4, e012021, https://doi.org/10.1590/S1984-29612021084CrossRefGoogle ScholarPubMed
Etewa, SA, Mohammad, SM, Saleh, AA, Abdelbary, EH, Mostafa, EM (2020). The impact of stem cells on parenteral phase of experimental trichinosis during vaccination trial. Afro-Egyptian Journal of Infectious and Endemic Diseases 10, 3, 310322. https://doi.org/10.21608/AEJI.2020.34944.1094Google Scholar
Gamble, HR (1996). Detection of trichinellosis in pigs by artificial digestion and enzyme immunoassay Journal of Food Protection 59, 3, 295298.CrossRefGoogle ScholarPubMed
Gamble, HR, Wisnewski, N, Wasson, DL (1997). Diagnosis of trichinellosis in swine by enzyme immunoassay, using a synthetic glycan antigen. American Journal of Veterinary Research 58, 12, 14171721.Google ScholarPubMed
Gilleard, JS, Beech, RN (2007). Population genetics of anthelmintic resistance in parasitic nematodes. Parasitology 134, Pt. 8, 11331147. https://doi.org/10.1017/S0031182007000066CrossRefGoogle ScholarPubMed
Gomez-Morales, MA, Mele, R, Sanchez, M, Sacchini, D, De Giacomo, M, Pozio, E (2002). Increased CD8(+)-T-cell expression and a type 2 cytokine pattern during the muscular phase of Trichinella infection in humans. Infection and immunity 70, 1, 233239. https://doi.org/10.1128/IAI.70.1.233-239.2002CrossRefGoogle Scholar
Gottstein, B, Pozio, E, Nockler, K (2009). Epidemiology, diagnosis, treatment, and control of trichinellosis. Clininical Microbiology Reviews 22, 1, 127145. https://doi.org/10.1128/CMR.00026-08CrossRefGoogle ScholarPubMed
Hosain, NA, Ghosh, R, Bryant, DL, Arivett, BA, Farone, AL, Kline, PC (2019). Isolation, structure elucidation, and immunostimulatory activity of polysaccharide 1 fractions from Boswellia carterii frankincense resin. International Journal of Biological Macromolecules 133, 7685. doi: 10.1016/j.ijbiomac.2019.04.059CrossRefGoogle ScholarPubMed
Huang, H, Yao, J, Liu, K, Yang, W, Wang, G, Shi, C, Jiang, Y, Wang, J, Kang, Y, Wang, D, Wang, C, Yang, G (2020). Sanguinarine has anthelmintic activity against the enteral and parenteral phases of Trichinella infection in experimentally infected mice. Acta Tropica 201, e105226. https://doi.org/10.1016/j.actatropica.2019.e105226CrossRefGoogle ScholarPubMed
Huang, K, Chen, Y, Liang, K, Xu, X, Jiang, J, Liu, M, Zhou, F (2022). Review of the chemical composition, pharmacological effects, pharmacokinetics, and quality control of Boswellia carterii. Evidence-based Complementary and Alternative Medicine 2022, 6627104. https://doi.org/10.1155/2022/6627104Google ScholarPubMed
Ibrahim, SM, Sarhan, MH, Farag, TI, Mohamed, AH (2019). Apoptotic and vascular changes in Trichinella spiralis infected mice after parenteral artemether treatment. Journal of Egyptian Society of Parasitology 49, 1, 1727. https://doi.org/10.21608/JESP.2019.68282CrossRefGoogle Scholar
Jebelli, A, Khalaj-Kondori, M, Bonyadi, M, Hosseinpour-Feizi, MA, Rahmati-Yamchi, M (2019). Beta-Boswellic acid and ethanolic extract of olibanum regulating the expression levels of CREB-1 and CREB-2 genes. Iranian Journal of Pharmaceutical Research 18, 2, 877886. https://doi.org/10.22037/ijpr.2019.1100665Google ScholarPubMed
Karmansaka, K, Houszka, M, Mista, D, Stefaniak, E (1994). CD4+ and CD8+ cells during infection with Trichinella spiralis in mice. Acta Parasitologica 40, 4, 5357.Google Scholar
Kazemzadeh, H, Mohammad, F, Mohammad, F (2014). Evaluating expression of oxidative stress genes in response to Trichinells spiralis infection. Indian Journal of Scientific Research 5, 1, 305309.Google Scholar
Latella, G, Sferra, R, Vetuschi, A, Zanninelli, G, D’angelo, A, Catitti, V, Caprilli, R, Gaudio, E (2008). Prevention of colonic fibrosis by Boswellia and Scutellaria extracts in rats with colitis induced by 2,4,5-trinitrobenzene sulphonic acid. European Journal of Clinical Investigation 38, 6, 410420. https://doi.org/10.1111/j.1365-2362.2008.01955.xCrossRefGoogle ScholarPubMed
Liu, M, Wu, Q, Chen, P, Büchele, B, Bian, M, Dong, S, Huang, D, Ren, C, Zhang, Y, Hou, X, Simmet, T, Shen, J (2014). A Boswellic acid-containing extract ameliorates Schistosomiasis liver granuloma and fibrosis through regulating NF-kB signaling in mice. PLoS ONE 9, 6, e100129. https://doi.org/10.1371/journal.pone.0100129CrossRefGoogle ScholarPubMed
Marefati, N, Beheshti, F, Memarpour, S, Bayat, R, Shafei, MN, Sadeghnia, HR, Ghazavi, H, Hosseini, M (2020). The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine 131, e155107. https://doi.org/10.1016/j.cyto.2020.155107CrossRefGoogle ScholarPubMed
Muñoz-Carrillo, JL, Gutiérrez-Coronado, O, Muñoz-Escobedo, JJ, Contreras-Cordero, JF, Maldonado-Tapia, C, Moreno-García, MA (2021). Resiniferatoxin promotes adult worm expulsion in Trichinella spiralis-infected rats by Th2 immune response modulation. Parasite Immunology 43, 8, e12840. https://doi.org/10.1111/pim.e12840CrossRefGoogle ScholarPubMed
Muñoz-Carrillo, JL, Muñoz-López, JL, Muñoz-Escobedo, JJ, Maldonado-Tapia, C, Gutiérrez-Coronado, O, Contreras-Cordero, JF, Moreno-García, MA (2017). Therapeutic effects of Resiniferatoxin related with immunological responses for intestinal inflammation in trichinellosis. Korean Journal of Parasitology 55, 6, 587599. https://doi.org/10.3347/kjp.2017.55.6.587CrossRefGoogle ScholarPubMed
Nassef, NE, El Sobky, MM, Afifi, AF (2010). Worm and larval burden, histopathological and ultrastructural evaluation of T. spiralis vaccination using crude worms and/or larvae antigens: experimental studies. Parasitologists United Journal 3, 12, 27–38.Google Scholar
Nassef, NE, Moharm, IM, Atia, AF, Brakat, RM, Abou Hussien, NM, Mohamed, AS (2018). Therapeutic efficacy of chitosan nanoparticles and albendazole in intestinal murine trichinellosis. Journal of Egyptian Society of Parasitology 48, 3, 493502. https://doi.org/10.21608/JESP.2018.76543CrossRefGoogle Scholar
Prichard, RK (2007). Markers for benzimidazole resistance in human parasitic nematodes? Parasitology 134, Pt. 8, 10871092. https://doi.org/10.1017/S003118200700008XCrossRefGoogle ScholarPubMed
Sarhan, MH, Etewa, SE, Al-Hoot, AA, Arafa, SZ, Shokir, RAMA, Moawad, HSF, Mohammad, SM (2021). Stem cells as a potential therapeutic trend for experimental trichinosis. Parasitologists United Journal 14, 2, 151161. https://doi.org/10.21608/PUJ.2021.74081.1118CrossRefGoogle Scholar
Schmidt, TJ, Kaiser, M, Brun, R (2011). Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata, and evaluation of its antiprotozoal activity. Planta Medica 77, 8, 849850. https://doi.org/10.1055/s-0030-1250612CrossRefGoogle ScholarPubMed
Shalaby, MA, Moghazy, FM, Shalaby, HA, Nasr, SM (2010). Effect of methanolic extract of Balanites aegyptiaca fruits on enteral and parenteral stages of Trichinella spiralis in rats. Parasitology Research 107, 1, 1725. https://doi.org/10.1007/s00436-010-1827-9CrossRefGoogle ScholarPubMed
Shoheib, ZS, Shamloula, MM, Abdin, AA, El-Segai, O (2006). Role of α-chymotrypsin and colchicine as adjuvant therapy in experimental muscular trichinellosis: Parasitological, biochemical & immunohistochemical study. Egyptian Journal of Medical Microbiology 15, 4, 773790.Google Scholar
Song, Y, Xu, J, Wang, X, Yang, Y, Bai, X, Pang, J, Wang, X, Yu, M, Liu, M, Liu, X, Sun, S (2019). Regulation of host immune cells and cytokine production induced by Trichinella spiralis infection. Parasite 26, 74. http://doi.org/10.1051/parasite/2019074CrossRefGoogle ScholarPubMed
Stäger, S, Rafati, S (2012). CD8(+) T cells in leishmania infections: friends or foes? Frontiers in Immunology 3, 5. https://doi.org/10.3389/fimmu.2012.00005CrossRefGoogle ScholarPubMed
Sun, S, Li, H, Yuan, Y, Wang, L, He, W, Xie, H, Gao, S, Cheng, R, Qian, H, Jiang, H, Wang, X, Zhan, B, Fang, Q, Yang, X (2019). Preventive and therapeutic effects of Trichinella spiralis adult extracts on allergic inflammation in an experimental asthma mouse model. Parasites and Vectors 12, 326. https://doi.org/10.1186/s13071-019-3561-1CrossRefGoogle Scholar
Yadav, AK, Temjenmongla, (2012). Efficacy of Lasia spinosa leaf extract in treating mice infected with Trichinella spiralis. Parasitology Research 110, 1, 493498, https://doi.org/10.1007/s00436-011-2551-9CrossRefGoogle ScholarPubMed