Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T12:28:55.593Z Has data issue: false hasContentIssue false

Helminth community from Azara's grass mouse (Akodon azarae) in three habitats with different land use in farming systems of Argentina

Published online by Cambridge University Press:  01 February 2018

M.H. Miño*
Affiliation:
Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, UBA-CONICET), C1428EGA Ciudad de Buenos Aires, Argentina
E.J. Rojas Herrera
Affiliation:
Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, UBA-CONICET), C1428EGA Ciudad de Buenos Aires, Argentina
J. Notarnicola
Affiliation:
Instituto de Biología Subtropical IBS (CCT Nordeste-CONICET), 3370 Puerto Iguazú, Misiones, Argentina
K. Hodara
Affiliation:
Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía (UBA), C1417DSE Ciudad de Buenos Aires, Argentina
*
Author for correspondence: M.H. Miño, E-mail: mminio@ege.fcen.uba.ar

Abstract

In the Pampa region of Argentina, farming activities have been performed since the beginning of the 20th century, but in the 1990s, land-use patterns rapidly changed towards intensive agriculture and poultry breeding. This study compares the helminth community of Akodon azarae (Rodentia) among three habitats with different land use in pampean agroecosystems: poultry farms, mono-cultivated fields and abandoned fields (not used for 35 years), under the prediction that there will be greater helminth richness and diversity in mice from abandoned fields compared to those from the other habitats. Nevertheless, the highest abundance of A. azarae occurred on poultry farms, the habitat most disturbed by human activity, while cultivated fields showed the lowest. Helminth richness and diversity were significantly higher on poultry farms than in the other habitats, due to the presence of Trichuris laevitestis, Protospirura numidica criceticola and cysts of Taenia taeniaeformis. We suggest that the helminth fauna of A. azarae can survive on poultry farms despite disturbance from farming activities, because rodents can move and get shelter within farm perimeter fences, where dense and high vegetation grows. This farm area could offer good conditions for geohelminth development, while chicken sheds could attract insects that are intermediate hosts of helminths with indirect life cycles. On the contrary, agrochemicals applied in cultivated fields would negatively influence helminth diversity and composition, by decreasing host populations (arthropods and rodents) and affecting free larval stages of geohelminths.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, RC (2000) Nematode parasites of vertebrates. Their development and transmission. 2nd edn. Ontario, University of Guelph.Google Scholar
Arneberg, P, Skorping, A, Grenfell, B and Read, AF (1998) Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London B 265, 12831289.Google Scholar
Axtell, RC (1999) Poultry integrated pest management: Status and future. Integrated Pest Management Reviews 4, 5373.Google Scholar
Baudry, J, Poggio, SL, Burel, F and Laurent, C (2010) Agricultural landscape changes through globalisation and biodiversity effects. pp. 5772 in Primdahl, J and Swaffield, S (Eds) Globalisation and agricultural landscapes: change patterns and policy trends in developed countries. Cambridge, Cambridge University Press.Google Scholar
Bilenca, DN and Kravetz, FO (1998) Seasonal variations in microhabitat use and food habits of the pampas mouse, Akodon azarae, in agroecosystems of central Argentina. Acta Theriologica 43, 195203.Google Scholar
Bilenca, DN, Kravetz, FO and Zuleta, GA (1992) Food habits of Akodon azarae and Calomys laucha (Cricetidae, Rodentia) in agroecosystems of central Argentina. Mammalia 56, 371383.Google Scholar
Bundy, DAP and Cooper, ES (1989) Trichuris and trichuriasis in humans. Advances in Parasitology 28, 107173.Google Scholar
Burnham, KP and Anderson, DR (2002) Model selection and multimodel inference: a practical information–theoretic approach. 2nd edn. New York, Springer.Google Scholar
Busch, M, Miño, MH, Dadon, JR and Hodara, K (2001) Habitat selection by Akodon azarae and Calomys laucha (Rodentia, Muridae) in pampean agroecosystems. Mammalia 65, 2948.Google Scholar
Bush, AO, Lafferty, KD, Lotz, JM and Shostak, AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.Google Scholar
Chaisiri, K, Chaeychomsri, W, Siruntawineti, J, Ribas, A, Herbreteau, V and Morand, S (2012) Diversity of gastrointestinal helminths among murid rodents from northern and northeastern Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health 43, 2128.Google Scholar
Durette-Desset, MC and Sutton, CA (1985) Contribución al conocimiento de la fauna parasitológica argentina X. Nematodes (Trichostrongyloidea) en Akodon azarae (Fischer) y Reithrodon auritus Fischer. Revista del Museo de La Plata, Zoología 14, 2126.Google Scholar
Ellis, BA, Mills, JN, Childs, JE, Muzzini, MC, McKee, KT, Enria, DA and Glass, GE (1997) Structure and floristics of habitat associated with five rodent species in an agroecosystem in Central Argentina. Journal of Zoology 243, 437460.Google Scholar
Ellis, BA, Mills, JN, Glass, GE, McKee, KT Jr, Enria, DA and Childs, JE (1998) Dietary habits of the common rodents in an agroecosystem in Argentina. Journal of Mammalogy 79, 12031220.Google Scholar
Fahrig, L, Girard, J, Duro, D, et al. (2015) Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems and Environment 200, 219234.Google Scholar
Froeschke, G and Matthee, S (2014) Landscape characteristics influence helminth infestations in a peri-domestic rodent – implications for possible zoonotic disease. Parasites & Vectors 7, 393.Google Scholar
Gómez Villafañe, IE, Miñarro, F, Ribicich, M, Rossetti, CA, Rossotti, D and Busch, M (2004) Assessment of the risks of rats (Rattus norvegicus) and opossums (Didelphis albiventris) in different poultry-rearing areas in Argentina. Brazilian Journal of Microbiology 35, 359363.Google Scholar
González Fischer, CM, Baldi, G, Codesido, M and Bilenca, D (2011) Seasonal variations in small mammal–landscape associations in temperate agroecosystems: a study case in Buenos Aires province, central Argentina. Mammalia 76, 399406.Google Scholar
Gotelli, NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81, 26062621.Google Scholar
Gotelli, NJ, Hart, E and Ellison, A (2015) Null model analysis for ecological data. Package EcoSimR in R Development Core Team R: A language and environment for statistical computing. Vienna, The R Foundation for Statistical Computing. Available at http://www.R-project.org/ (accessed 17 December 2017).Google Scholar
Grundmann, AW (1957) Nematode parasites of mammals of the Great Salt Lake Desert region of Utah. Journal of Parasitology 44, 425429.Google Scholar
Grundmann, AW and Frandsen, JC (1960) Definitive host relationships of the helminth parasites of the deer mouse, Peromyscus maniculatus, in the Bonneville Basin of Utah. Journal of Parasitology 46, 673678.Google Scholar
Guidobono, JS, Muñoz, J, Muschetto, E, Teta, P and Busch, M (2016) Food habits of Geoffroy's cat (Leopardus geoffroyi) in agroecosystem habitats of Buenos Aires, Argentina. Ecología Austral 26, 4050.Google Scholar
Hodara, K and Busch, M (2006) Return to preferred habitats (edges) as a function of distance in Akodon azarae (Rodentia, Muridae) in cropfield-edge systems of central Argentina. Journal of Ethology 24, 141145.Google Scholar
Hodara, K and Busch, M (2010) Patterns of macro and microhabitat use of two rodent species in relation to agricultural practices. Ecological Research 25, 113121.Google Scholar
Hodara, K and Poggio, SL (2016) Frogs taste nice when there are few mice: do dietary shifts in barn owls result from rapid farming intensification? Agriculture, Ecosystems and Environment 230, 4246.Google Scholar
Jones, A and Pybus, MJ (2001) Taeniasis and echinococcosis. pp. 150192 in Samuel, WM, Kocan, AA, Pybus, MJ and Davis, JW (Eds) Parasitic diseases of wild mammals. Ames, Iowa, Iowa State University Press.Google Scholar
King, KC, McLaughlin, JD, Gendron, AD, Pauli, BD, Giroux, I, Rondeau, B, Boily, M, Juneau, P and Marcogliese, DJ (2007) Impacts of agriculture on the parasite communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. Parasitology 134, 20632080.Google Scholar
Legendre, P and Legendre, L (1998) Numerical ecology. 2nd edn. Amsterdam, Elsevier Science.Google Scholar
Loos-Frank, B (2000) An up-date of Verster's (1969). ‘Taxonomic revision of the genus Taenia Linnaeus’ Cestoda in table format. Systematic Parasitology 45, 155183.Google Scholar
Luong, LT and Hudson, PJ (2012) Complex life cycle of Pterygodermatites peromysci, a trophically transmitted parasite of the white-footed mouse (Peromyscus leucopus). Parasitology Research 110, 483487.Google Scholar
Magurran, AE (2004) Measuring ecological diversity. 1st edn. Oxford, Blackwell Publishing.Google Scholar
May, RM and Anderson, RM (1979) Population biology of infectious diseases. II. Nature 280, 455461.Google Scholar
Mbora, DNM and McPeek, MA (2009) Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. Journal of Animal Ecology 78, 210218.Google Scholar
McCune, B and Mefford, MJ (1999) PC-ORD. Multivariate analysis of ecological data. Version 6.0 for Windows. Oregon, Gleneden Beach.Google Scholar
Medan, D, Torreta, J, Hodara, K, de la Fuente, E and Montaldo, N (2011) Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodiversity and Conservation 20, 30773100.Google Scholar
Mills, JN, Ellis, BA, McKee, KT Jr, Maiztegui, JI and Childs, JE (1991) Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina. Journal of Mammalogy 72, 470479.Google Scholar
Miño, MH (2008) Infection pattern of the spirurid nematode Protospirura numidica criceticola in the cricetid rodent Akodon azarae on poultry farms of central Argentina. Journal of Helminthology 82, 153158.Google Scholar
Miño, MH, Cavia, R, Gómez Villafañe, IE, Bilenca, DN and Busch, M (2007) Seasonal abundance and distribution among habitats of small rodents on poultry farms. A contribution for their control. International Journal of Pest Management 53, 311316.Google Scholar
Miño, MH, Rojas Herrera, EJ, Notarnicola, J, Robles, MR and Navone, GT (2012) Diversity of the helminth community of the Pampean grassland mouse (Akodon azarae) on poultry farms in central Argentina. Journal of Helminthology 86, 4653.Google Scholar
Miño, MH, Rojas Herrera, EJ and Notarnicola, J (2013) The wild rodent Akodon azarae (Cricetidae: Sigmodontinae) as intermediate host of Taenia taeniaeformis (Cestoda: Cyclophyllidea) on poultry farms of Central Argentina. Mastozoología Neotropical 20, 407412.Google Scholar
Miyasaki, I (1991) Helminthic zoonoses. 1st edn. Tokyo, International Medical Foundation of Japan.Google Scholar
Molina, GAR, Poggio, SL and Ghersa, CM (2014) Epigeal arthropod communities in intensively farmed landscapes: effects of land use mosaics, neighbourhood heterogeneity and field position. Agriculture, Ecosystems and Environment 192, 135143.Google Scholar
Morand, S and Poulin, R (1998) Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology 12, 717727.Google Scholar
Navone, GT, Notarnicola, J, Nava, S, Robles, MR, Galliari, C and Lareschi, M (2009) Arthropods and helminths assemblage in sigmodontine rodents from wetlands of the Rio de la Plata, Argentina. Mastozoología Neotropical 16, 121133.Google Scholar
Notarnicola, J (2005) Description of adult and fourth-stage larva of Litomosoides navonae n. sp. (Nematoda: Onchocercidae), a parasite of five species of sigmodontine rodents from northeastern Argentina. Systematic Parasitology 62, 171183.Google Scholar
Notarnicola, J, Digiani, MC and López, PM (2010) Redescriptions of the nematodes Litomosoides patersoni (Mazza, 1928) (Onchocercidae) and Stilestrongylus stilesi Freitas, Lent and Almeida, 1937 (Heligmonellidae) parasites of Holochilus chacarius (Rodentia, Cricetidae) from Salta, Argentina. Journal of Parasitology 96, 9931001.Google Scholar
Poggio, SL, Chaneton, EJ and Ghersa, CM (2010) Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biological Conservation 143, 24772486.Google Scholar
Poggio, SL, Chaneton, EJ and Ghersa, CM (2013) The arable plant diversity of intensively managed farmland: effects of field position and crop type at local and landscape scales. Agriculture, Ecosystems and Environment 166, 5564.Google Scholar
Priotto, JW and Steinmann, AR (1999) Factors affecting home range size and overlap in Akodon azarae (Muridae: Sigmodontinae) in natural pasture of Argentina. Acta Theriologica 44, 3744.Google Scholar
Quentin, JC, Karimi, Y and Rodriguez de Almeida, C (1968) Protospirura numidica criceticola, n. subsp. parasite de rongeurs Cricetidae du Brésil. Cycle evolutif. Annales de Parasitologie (Paris) 43, 583596.Google Scholar
R Development Core Team (2016) R: A language and environment for statistical computing. Vienna, The R Foundation for Statistical Computing. Available online at http://www.R-project.org/ (accessed 17 December 2017).Google Scholar
Robles, MR (2008) Nematodes Oxyuridae, Trichuridae y Capillarridae en roedores Akodontini (Cricetidae, Sigmodontinae) de la Cuenca del Plata (Argentina): su importancia en la interpretación de las relaciones parásito-hospedador-ambiente. PhD thesis, Universidad Nacional de La Plata.Google Scholar
Robles, MR and Navone, GT (2006) Redescription of Trichuris laevitestis (Nematoda: Trichuridae) from Akodon azarae and Scapteromys aquaticus (Sigmodontinae: Cricetidae) in Buenos Aires province, Argentina. Journal of Parasitology 92, 10531057.Google Scholar
Robles, MR and Navone, GT (2007) A new species of Syphacia (Nematoda: Oxyuridae) from Akodon azarae (Rodentia: Cricetidae) in Argentina. Journal of Parasitology 93, 383390.Google Scholar
Robles, MR and Navone, GT (2014) New host records and geographic distribution of species of Trichuris (Nematoda: Trichuriidae) in rodents from Argentina with an updated summary of records from America. Mastozoología Neotropical 21, 6778.Google Scholar
Robles, MR, Navone, GT and Gómez Villafañe, IE (2008) New morphological details and first records of Heterakis spumosa and Syphacia muris from Argentina. Comparative Parasitology 75, 145149.Google Scholar
Soriano, A, León, RJC, Sala, OE, Lavado, RS, Deregibus, VA, Cauhépé, MA, Scaglia, OA, Velásquez, CA and Lemcoff, JH (1992) Río de la Plata grasslands. pp. 367407 in Coupland, RT (Ed.) Ecosystems of the world 8A. Natural grasslands. Introduction and Western Hemisphere Amsterdam, Elsevier.Google Scholar
Suárez, OV and Kravetz, FO (1998) Patrón copulatorio y sistema de apareamiento en Akodon azarae (Rodentia, Muridae). Iheringia, Série Zoologia 84, 133140.Google Scholar
Sutton, CA (1984) Contribución al conocimiento de la fauna parasitológica argentina XIII. Nuevos nematodes de la familia Rictulariidae. Neotropica 30, 141152.Google Scholar
Theis, JH and Schwab, RQ (1992) Seasonal prevalence of Taenia taeniaeformis: relationship to age, sex, reproduction and abundance of an intermediate host (Peromyscus maniculatus). Journal of Wildlife Diseases 28, 4250.Google Scholar
Tognetti, PM, Chaneton, EJ, Omacini, M and León, RJC (2010) Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina. Biological Conservation 143, 24942503.Google Scholar
Torretta, JP and Poggio, SL (2013) Species diversity of entomophilous plants and flower-visiting insects is sustained in the field margins of sunflower crops. Journal of Natural History 47, 139165.Google Scholar
Vitousek, PM, Mooney, HA, Lubchenco, J and Melillo, JM (1997) Human domination of Earth's ecosystems. Science 277, 494499.Google Scholar
Wilson, DE and Reeder, DM (2005) Mammal species of the world: a taxonomic and geographic reference. 3rd edn. Baltimore, Johns Hopkins University Press.Google Scholar