Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-09T14:06:34.091Z Has data issue: false hasContentIssue false

Impact of treatment with praziquantel, silymarin and/or β-glucan on pathophysiological markers of liver damage and fibrosis in mice infected with Mesocestoides vogae (Cestoda) tetrathyridia

Published online by Cambridge University Press:  01 September 2008

S. Velebný
Affiliation:
Parasitological Institute, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
G. Hrčkova*
Affiliation:
Parasitological Institute, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
G. Kogan
Affiliation:
Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovak Republic
*
*Fax: +421 55 6331414 E-mail: hrcka@saske.sk

Abstract

Mesocestoides vogae tetrathyridia infection in mice causes hepatocyte injury, hepatic granulomatous inflammmation, liver fibrosis and chronic peritonitis manifested with portal hypertension. To reduce the detrimental effect of parasites on the host liver, the effect of the anthelmintic drug praziquantel (PZQ) in combination with natural products silymarin (an antioxidant) and β-glucan (an immunomodulator) was investigated. The therapeutic effect of drugs was assessed by means of aminotransferase (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) activities, content of albumin, total proteins and hyaluronic acid (HA) in sera of ICR mice infected with M. vogae larvae. Animals were treated with PZQ suspended in oil emulsion (Group 1), PZQ combined with silymarin incorporated into lipid microspheres (LMS) (Group 2), PZQ combined with β-glucan incorporated into liposomes (LG) (Group 3), PZQ co-administered with LMS and LG (Group 4). Untreated animals (Group 5) served as the control. Treatment of animals started at the early chronic phase of infection (day 14 p.i.) and lasted 10 days; serum samples were collected on days 0, 7, 14, 25, 28, 31, 35 and 45 p.i. ALT and AST activities were significantly (P < 0.05) decreased in Groups 2, 3 and 4. HA content was significantly (P < 0.05 and 0.01) lower in Groups 2 and 4. Albumin levels were decreased in Groups 2 and 4, total protein concentration decreased in Groups 1 and 3 (P < 0.05 and 0.01). These results showed that combined treatment of PZQ with silymarin and/or β-glucan was able to ameliorate or suppress fibrogenesis in the liver, protect liver cells from oxidative damage and, possibly, stimulate regeneration of the parenchyma.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrol, S., Trehan, A. & Katare, O.P. (2005) Comparative study of different silymarin formulations: formulation, characterisation and in vitro/in vivo evaluation. Current Drug Delivery 2, 4551.Google Scholar
Badawy, A.A., El-Badrawy, N.M., Mansy, S.S., Akl, M.M., Abdel Hady, A.M., Ebeid, F.A. & Hassan, M.M. (1996) Evaluation of colchicine with or without praziquantel therapy in the control of hepatic fibrosis in murine schistosomiasis. Pharmacological Research 33, 319325.Google Scholar
Boigk, G., Stroedter, L., Herbst, H., Waldschmidt, J., Riecken, E.O. & Schuppan, D. (1997) Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology 26, 643649.Google Scholar
Collins, J.N., Dyess, D.L., Ardell, J.L., Townsley, M.I., Taylor, A.E. & Ferrara, J.J. (1994) The effects of albumin administration on microvascular permeability at the site of burn injury. Journal of Trauma 36, 2733.CrossRefGoogle ScholarPubMed
Cassiman, D., Libbrecht, L., Desmet, V., Denef, C. & Roskams, T. (2002) Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. Journal of Hepatology 36, 200209.CrossRefGoogle ScholarPubMed
Dvořák, Z., Kosina, P., Walterová, D., Šimánek, V., Bachleda, P. & Ulrichová, J. (2003) Primary cultures of human hepatocytes as a tool in toxicity studies: cell protection against model toxins by flavonolignans obtained from Silybum marianum. Toxicological Letters 137, 201212.CrossRefGoogle ScholarPubMed
Gaté, L., Paul, J., Ba, G.N., Tew, K.D. & Tapeiro, H. (1999) Oxidative stress induced in pathologies: the role of antioxidants. Biomedicine and Pharmacotherapy 53, 169180.CrossRefGoogle ScholarPubMed
George, J., Tsutsumi, M. & Takase, S. (2004) Expression of hyaluronic acid in N-nitrosodimethylamine induced hepatic fibrosis in rats. International Journal of Biochemistry and Cell Biology 36, 307319.Google Scholar
Grenard, P., Blanquier, B. & Ricard-Blum, S. (1997) Urinary excretion of the collagen cross-link pyridinoline increases during liver fibrogenesis. Journal of Hepatology 26, 13561362.CrossRefGoogle ScholarPubMed
Grzeszczuk, A. & Prokopowicz, D. (2004) Serum hyaluronic acid during lamivudine treatment in chronic hepatitis B. Annals Academiae Medicine Bialostocensis 49, 275279.Google Scholar
Guechot, J., Loria, A., Serfaty, L., Giral, P., Giboudeadu, J. & Poupon, R. (1995) Serum hyaluronan as a marker of liver fibrosis in chronic viral hepatitis C: effect of alpha-interferon therapy. Journal of Hepatology 22, 2226.Google Scholar
Harder, A. (2002) Chemotherapeutic approaches to trematodes (except schistosomes) and cestodes: current level of knowledge and outlook. Parasitology Research 88, 587590.CrossRefGoogle ScholarPubMed
Herrera, L.A., Valverde, M., Ostrosky-Wegman, P., Speit, G. & del Castillo, E.R. (1998) Analysis of the DNA damage induced by praziquantel in V-79 Chinese hamster fibroblasts and human blood cells using the single-cell gel electrophoresis assay. Teratogenesis, Carcinogenesis and Mutagenesis 18, 4147.Google Scholar
Hrčkova, G. & Velebný, S. (1995) Effects of free and liposomized praziquantel on worm burden and antibody response in mice infected with Mesocestoides corti tetrathyridia. Journal of Helminthology 69, 213221.CrossRefGoogle ScholarPubMed
Hrčkova, G., Velebný, S., Daxnerová, Z. & Solár, P. (2006) Praziquantel and liposomized glucan-treatment modulated liver fibrogenesis and mastocytosis in mice infected with Mesocestoides vogae (M. corti, Cestoda) tetrathyridia. Parasitology 132, 581594.CrossRefGoogle ScholarPubMed
Hrčkova, G., Velebný, S. & Kogan, G. (2007) Antibody response in mice infected with Mesocestoides vogae (syn. M. corti) tetrathyridia after treatment with praziquantel and liposomised glucan. Parasitology Research 100, 13511359.CrossRefGoogle Scholar
Hutadilok, N., Thamavit, W., Upatham, E.S. & Ruenwongsa, P. (1983) Liver procollagen prolyl hydroxylase in Opistorchis viverini infected hamsters after praziquantel administration. Molecular and Biochemical Parasitology 9, 289295.CrossRefGoogle Scholar
Jia, J.D., Bauer, M., Cho, J.J., Ruehl, M., Milani, S., Boigk, G., Riecken, E.O. & Shuppan, D. (2001) Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen α1(I) and TIMP-1. Journal of Hepatology 35, 392398.CrossRefGoogle ScholarPubMed
Juránek, I. & Bezek, Š. (2005) Controversy of free radical hypothesis: reactive oxygen species – cause or consequence of tissue injury? General Physiology Biophysics 24, 263278.Google ScholarPubMed
Kadian, S.K., Dixon, J.B., Carter, S.D. & Jenkins, P. (1996) Macrophage modifying factor secreted by the tetrathyridia of Mesocestoides corti (Cestoda): monoclonal antibody to the modifying factor antagonizes its immunological activity. Parasite Immunology 18, 6570.CrossRefGoogle Scholar
Ki, S.H., Choi, D.W., Kim, Ch.W. & Kim, S.G. (2005) Lack of therapeutic improvement of liver fibrosis in rats by dexamethasone in spite of ascites amelioration. Clinico-Biological Interactions 152, 3747.Google Scholar
King, C.H. & Mahmoud, A.A. (1989) Drug five years later. Praziquantel. Annals of Internal Medicine 110, 290296.Google Scholar
Kogan, G. (2000) (1 → 3, 1 → 6)-β-d-glucans of yeasts and fungi and their biological activity. pp. 107152in Ur-Rahman, A. (Ed.) Studies in natural products chemistry, 23. The Netherlands, Elsevier.Google Scholar
Köpke-Aguiar, L.A., Martins, J.R.M., Passerotti, C.C., Toledo, C.F., Nader, H.B. & Borges, D.R. (2002) Serum hyaluronic acid as a comprehensive marker to assess severity of liver disease in schistosomiasis. Acta Tropica 84, 117126.CrossRefGoogle ScholarPubMed
Lata, J., Dastych, M. Jr, Šenkyřík, M., Husová, M. & Starý, K. (2001) Protective effect of essential phospholipids on liver injury due to total parenteral nutrition. Vnitrní Lékařství 47, 599603.Google ScholarPubMed
Lee, S.S., Hadengue, J.L., Girod, C., Braillon, A. & Lebrec, D. (1987) Reduction of intrahepatic vascular space in the pathogenesis of portal hypertension. In vitro and in vivo studies in the rat. Gastroenterology 93, 157161.Google Scholar
Lettéron, P., Labbe, G., Degott, C., Berson, A., Fromenty, B., Delaforge, M., Larrey, D. & Pessayre, D. (1990) Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Biochemical Pharmacology 39, 20272034.Google Scholar
Luper, S. (1998) A review of plants used in the treatment of liver disease: part I. Alternative Medicine Review 3, 410421.Google Scholar
Machová, E., Kogan, G., Alföldi, J., Soltys, L. & Sandula, J. (1995) Enzymatic and ultrasonic depolymerization of carboxymathylated β-1,3-D-glucans derived from Saccharomyces cerevisiae. Journal of Applied Polymer Science 55, 699704.Google Scholar
Magliulo, E., Carosi, P.G. & Minoli, L. (1973) Studies on the regenerative capacity of the liver in rats subjected to partial hepatectomy and treated with silymarin. Arzneimittelforschung 23, 161167.Google ScholarPubMed
Malheiros, S.V.P., Brito, M.A., Brites, D. & Meirelles, N.C. (2000) Membrane effects of trifluoroperazine, dibucaine and praziquantel on human erythrocytes. Chemico-Biological Interactions 126, 7995.Google Scholar
Manna, S.K., Mukhopadhyay, A., Van, N.T. & Aggarwal, B.B. (1999) Silymarin suppresses TNF-induced activation of NF-κB, c-jun N-terminal kinase, and apoptosis. Journal of Immunology 163, 68006809.Google Scholar
Oberti, F., Pilette, Ch., Rifflet, H., Maïga, M.I., Moreau, A., Gallois, Y., Girault, A., Le Bouil, A., Le Jeune, J.-J., Saumet, J.-L., Feldmann, G. & Calès, P. (1997) Effects of simvastatin, pentoxyfilline and spironolactone on hepatic fibrosis and portal hypertension in rats with bile duct ligation. Journal of Hepathology 26, 13631371.CrossRefGoogle Scholar
Oliveira, F.A., Kusel, J.R., Ribeiro, F. & Coelho, P.M.Z. (2006) Responses of the surface membrane and secretory system of Schistosoma mansoni to damage and to treatment with praziquantel and other biomolecules. Parasitology 132, 321330.CrossRefGoogle Scholar
Pascual, C., Gonzales, R., Armesto, J. & Muriel, P. (2004) Effect of silymarin and silybinin on oxygen radicals. Drug Development Research 29, 7377.CrossRefGoogle Scholar
Pinzani, M. & Rombouts, K. (2004) Liver fibrosis: from the bench to clinical targets. Digestive and Liver Disease 36, 231242.Google Scholar
Plevris, J.N., Haydon, G.H., Simpson, K.J., Dawkes, R., Ludlum, C.A., Harrison, D.J. & Hayes, P.C. (2000) Serum hyaluronan – a non-invasive test for diagnosing of liver cirrhosis. European Journal of Gastroenterology and Hepatology 12, 11211127.Google Scholar
Riley, S.L. & Chernin, J. (1994) The effect of tetrathyridia of Mesocestoides corti on the livers and peripheral blood of three different strains of mice. Parasitology 109, 291297.Google Scholar
Runyon, B.A., Montano, A.A., Akriviadis, E.A., Antillon, M.R., Irving, M.A. & McChutchison, J.G. (1992) The serum-ascites albumin gradient is superior to the exudate-transudate concept in the differential diagnosis of ascites. Annals of Internal Medicine 117, 215220.CrossRefGoogle Scholar
Schepers, H., Brasser, R., Goormagttigh, E., Duquenoy, P. & Ruysschaert, J.M. (1988) Mode of insertion of prosaquantel and derivatives into lipid membranes. Biochemical Pharmacology 37, 16151623.Google Scholar
Singh, K.P., Gerard, H.C., Hudson, A.P. & Boros, D.L. (2004) Expression of matrix metalloproteinases and their inhibitors during the resorption of schistosome egg-induced fibrosis in praziquantel-treated mice. Immunology 111, 343352.Google Scholar
Sonnenbichler, J. & Zetl, I. (1986) Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers. pp. 319331in Cody, V., Middleton, E. & Harborne, J.B. (Eds) Plant flavonoids in biology and medicine: biochemical, pharmacological and structure–activity relationship. New York, Alan R. Lis, Inc.Google Scholar
Specht, D. & Voge, M. (1965) Asexual multiplication of Mesocestoides tetrathyridia in laboratory animals. Journal of Parasitology 51, 268272.Google Scholar
Specht, D. & Widmer, E.A. (1972) Response of mouse liver to infection with tetrathyridia of Mesocestoides (Cestoda). Journal of Parasitology 58, 431437.Google Scholar
Takeishi, T., Hirano, K., Kobayashi, T., Hasegawa, G., Hatakeyama, K. & Naito, M. (1999) The role of Kupffer cells in liver regeneration. Archives of Histology and Cytology 62, 413422.CrossRefGoogle ScholarPubMed
Tsiapali, E., Whaley, S., Kalbfleisch, J., Ensley, H.E., Browder, W.I & Williams, D.L. (2001) Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biology and Medicine 30, 393402.Google Scholar
Valenzuela, A., Aspillaga, M., Vial, S. & Guerra, R. (1989) Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Medica 55, 420422.CrossRefGoogle ScholarPubMed
Velebný, S. & Hrčkova, G. (2005) Efficacy of praziquantel and liposome entrapped glucan on larval Mesocestoides vogae infection in mice, the type I and III collagen distribution and collagen content in the liver. Helminthologia 42, 197204.Google Scholar
Velebný, S., Hrčkova, G., Tomašovičová, O. & Dubinský, P. (2000) Treatment of larval toxocarosis in mice with fenbendazole entrapped in neutral and negatively charged liposomes. Helminthologia 37, 119125.Google Scholar
Vrochides, D., Papanikolaou, V., Pertoft, H., Antoniades, A.A. & Heldin, P. (1996) Biosynthesis and degradation of hyaluronan by nonparenchymal liver cells during liver regeneration. Hepatology 23, 16501655.CrossRefGoogle ScholarPubMed
Wakshull, E., Brunke-Reese, D., Lindermuth, J., Fisette, L., Nathans, R.S., Crowley, J.J., Tufts, J.C., Zimmerman, J., Mackin, W. & Adams, D.S. (1999) PGG-glucan, a soluble β-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-κB-like factor in human PMN: evidence for a glycosphingolipid β-(1,3)-glucan receptor. Immunopharmacology 41, 89107.CrossRefGoogle Scholar
White, T.R., Thompson, R.C.A., Penhale, W.J., Pass, D.A. & Millis, J.N. (1982) Pathophysiology of Mesocestoides corti infection in mouse. Journal of Helminthology 56, 145153.CrossRefGoogle Scholar
White, T.R., Thompson, R.C.A., Penhale, W.J. & Chihara, G. (1988) The effect of lentinan on the resistance of mice to Mesocestoides corti. Parasitology Research 74, 563568.CrossRefGoogle ScholarPubMed
WHO (1984) Guidelines for surveillance, prevention and control of echinococcosis/hydatidosis. 2nd edn.Geneva, World Health Organisation.Google Scholar
Williams, D.L., Mueller, A. & Browder, W. (1996) Glucan-based macrophage stimulators. A review of their anti-infective potential. Clinical Immunotherapy 5, 392399.Google Scholar
Wu, J. & Zern, M.A. (2000) Hepatic stellate cells: a target for the treatment of liver fibrosis. Journal of Gastroenterology 35, 665672.Google Scholar
Yenari, M.A., Giffard, R.G., Sapolsky, R.M. & Steinberg, G.K. (1999) The neuroprotective potential of heat shock protein 70 (HSP70). Molecular Medicine Today 5, 525531.Google Scholar
Zilva, J.F. & Pannall, P.R. (1984) Plasma enzymes in diagnosis. pp. 366385in Zilva, J.F. & Pannall, P.R. (Eds) Clinical chemistry in diagnosis and treatment. London, Lloyd-Luke (Medical Books).Google Scholar