Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-25T00:23:04.509Z Has data issue: false hasContentIssue false

Systematics and life cycles of four avian schistosomatids from Southern Cone of South America

Published online by Cambridge University Press:  03 June 2024

P. Oyarzún-Ruiz*
Affiliation:
Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
R. Thomas
Affiliation:
Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3780000, Chile
A. Santodomingo
Affiliation:
Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3780000, Chile
M. Zamorano-Uribe
Affiliation:
Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3780000, Chile
M. Moroni
Affiliation:
Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
L. Moreno
Affiliation:
Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
S. Muñoz-Leal
Affiliation:
Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3780000, Chile
V. Flores
Affiliation:
Laboratorio de Parasitología, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina
S. Brant
Affiliation:
Museum of Southwestern Biology Parasite Division, University of New Mexico, 167 Castetter MSCO3 2020, Albuquerque, NM 87131, USA
*
Corresponding author: P. Oyarzún-Ruiz; Email: poyarzun@udec.cl

Abstract

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S. versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S. cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N. melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agüero, ML, Gilardoni, C, Cremonte, F and Diaz, JI (2016) Stomach nematodes of three sympatric species of anatid birds off the coast of Patagonia. Journal of Helminthology 90(6), 663667. https://doi.org/10.1017/S0022149X15000899.CrossRefGoogle ScholarPubMed
Ashrafi, K, Sharifdini, M, Darjani, A and Brant, SV (2021) Migratory routes, domesticated birds and cercarial dermatitis: the distribution of Trichobilharzia franki in Northern Iran. Parasite 28, 4. https://doi.org/10.1051/parasite/2020073.CrossRefGoogle ScholarPubMed
Blair, D and Islam, KS (1983) The life-cycle and morphology of Trichobilharzia australis n. sp. (Digenea: Schistosomatidae) from the nasal blood vessels of the black duck (Anas superciliosa) in Australia, with a review of the genus Trichobilharzia. Systematic Parasitology 5(2), 89117. https://doi.org/10.1007/BF00049237.CrossRefGoogle Scholar
Bouckaert, R, Vaughan, TG, Barido-Sottani, J, Duchêne, S, Fourment, M, Gavryushkina, A, Heled, J, Jones, G, Kühnert, D, De Maio, N, Matschiner, M, Mendes, FK, Müller, NF, Ogilvie, HA, du Plessis, L, Popinga, A, Rambaut, A, Rasmussen, D, Siveroni, I, Suchard, MA, Wu, C-H, Xie, D, Zhang, C, Stadler, T and Drummond, AJ (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650.CrossRefGoogle ScholarPubMed
Brant, SV (2007) The occurrence of the avian schistosome Allobilharzia visceralis Kolářová, Rudolfová, Hampl et Skírnisson, 2006 (Schistosomatidae) in the tundra swan, Cygnus columbianus (Anatidae), from North America. Folia Parasitologica 54(2), 99104. https://doi.org/10.14411/fp.2007.013.CrossRefGoogle Scholar
Brant, SV and Loker, ES (2009) Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. Journal of Parasitology 95(4), 941963. https://doi.org/10.1645/GE-1870.1.CrossRefGoogle ScholarPubMed
Brant, SV, Bochte, CA and Loker, ES (2011) New intermediate host records for the avian schistosomes Dendritobilharzia pulverulenta, Gigantobilharzia huronensis, and Trichobilharzia querquedulae from North America. Journal of Parasitology 97(5), 946949. https://doi.org/10.1645/GE-2743.1.CrossRefGoogle ScholarPubMed
Brant, SV, Jouet, D, Ferte, H, Loker, ES (2013) Anserobilharzia gen. n. (Digenea, Schistosomatidae) and redescription of A. brantae (Farr & Blankemeyer, 1956) comb. n. (syn. Trichobilharzia brantae), a parasite of geese (Anseriformes). Zootaxa 3670, 193206. https://doi.org/10.11646/zootaxa.3670.2.5.CrossRefGoogle Scholar
Brant, SV and Loker, ES (2013) Discovery-based studies of schistosome diversity stimulate new hypotheses about parasite biology. Trends in Parasitology 29(9), 449459. https://doi.org/10.1016/j.pt.2013.06.004.CrossRefGoogle ScholarPubMed
Brant, SV, Loker, ES, Casalins, L and Flores, V (2017) Phylogenetic placement of a schistosome from an unusual marine snail host, the false limpet (Siphonaria lessoni) and gulls (Larus dominicanus) from Argentina with a brief review of marine schistosomes from snails. Journal of Parasitology 103(1), 7582. https://doi.org/10.1645/16-43.CrossRefGoogle ScholarPubMed
Bush, AO, Lafferty, KD, Lotz, JM and Shostak, AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83(4), 575583. https://doi.org/10.2307/3284227.CrossRefGoogle Scholar
Christiansen, A, Olsen, A, Buchmann, K, Kania, PW, Nejsum, P and Vennervald, BJ (2016) Molecular diversity of avian schistosomes in Danish freshwater snails. Parasitology Research 115(3), 10271037. https://doi.org/10.1007/s00436-015-4830-3.CrossRefGoogle ScholarPubMed
Collado, GA, Vidal, MA, Aguayo, KP, Méndez, MA, Valladares, MA, Cabrera, FJ, Pastenes, L, Gutiérrez Gregoric, DE and Puillandre, N (2019) Morphological and molecular analysis of cryptic native and invasive freshwater snails in Chile. Scientific Reports 9(1), 7846. https://doi.org/10.1038/s41598-019-41279-x.CrossRefGoogle ScholarPubMed
Cuezzo, MG (2009) Mollusca Gastropoda. In Domínguez, E and Fernández, HR (eds), Macroinvertebrados Bentónicos Sudamericanos -Sistemática y Biología. Tucumán, Argentina: Fundacion Miguel Lillo, 595629.Google Scholar
Davis, NE (2006) Identification of an avian schistosome recovered from Aythya novaeseelandia and infectivity of its miracidia to Lymnaea tomentosa snails. Journal of Helminthology 80(3), 225233. https://doi.org/10.1079/JOH2005327.CrossRefGoogle ScholarPubMed
Davis, NE, Blair, D and Brant, SV (2022) Diversity of Trichobilharzia in New Zealand with a new species and a redescription, and their likely contribution to cercarial dermatitis. Parasitology 149(3), 380395. https://doi.org/10.1017/S0031182021001943.CrossRefGoogle Scholar
Dvořák, J, Vaňáčová, Š, Hampl, V, Flegr, J and Horák, P (2002) Comparison of European Trichobilharzia species based on ITS1 and ITS2 sequences. Parasitology 124(3), 307313. https://doi.org/10.1017/S0031182001001238.CrossRefGoogle ScholarPubMed
Ebbs, ET, Loker, ES, Davis, NE, Flores, V, Veleizán, A and Brant, SV (2016) Schistosomes with wings: how host phylogeny and ecology shape the global distribution of Trichobilharzia querquedulae (Schistosomatidae). International Journal for Parasitology 46, 669677. https://doi.org/10.1016/j.ijpara.2016.04.009.CrossRefGoogle ScholarPubMed
Ebbs, ET, Loker, ES and Brant, SV (2018) Phylogeography and genetics of the globally invasive snail Physa acuta Draparnaud 1805, and its potential to serve as an intermediate host to larval digenetic trematodes. BMC Evolutionary Biology 18(1), 103. https://doi.org/10.1186/s12862-018-1208-z.CrossRefGoogle ScholarPubMed
Ebbs, ET, Loker, ES, Bu, L, Locke, SA, Tkach, VV, Devkota, R, Flores, VR, Pinto, HA and Brant, SV (2022) Phylogenomics and diversification of the Schistosomatidae based on targeted sequence capture of ultra-conserved elements. Pathogens 11, 769. https://doi.org/10.3390/pathogens11070769.CrossRefGoogle ScholarPubMed
Flores, V, Brant, SV and Loker, ES (2015) Avian schistosomes from the South American endemic gastropod genus Chilina (Pulmonata: Chilinidae), with a brief review of South American schistosome species. Journal of Parasitology 101(5), 565576. https://doi.org/10.1645/14-639.CrossRefGoogle ScholarPubMed
Flores, V, Viozzi, G, Casalins, L, Loker, ES and Brant, SV (2021) A new Schistosome (Digenea: Schistosomatidae) from the nasal tissue of South America black-necked swans, Cygnus melancoryphus (Anatidae) and the endemic pulmonate snail Chilina gibbosa. Zootaxa 4948(3), 404418. https://doi.org/10.11646/zootaxa.4948.3.5.CrossRefGoogle ScholarPubMed
Freitas, MG and Costa, HM de A (1972) Dendritobilharzia anatinarum Cheatum, 1941 em pato doméstico, no Brasil (Trematoda, Schistosomatidae). Revista Brasileira de Biologia 32(3), 343345.Google ScholarPubMed
Fuentealba, C, Figueroa, R and Morrone, JJ (2010) Análisis de endemismo de moluscos dulceacuícolas de Chile. Revista Chilena de Historia Natural 83(2), 289298. https://doi.org/10.4067/S0716-078X2010000200009.CrossRefGoogle Scholar
Garvon, JM, Fedynich, AM, Peterson, MJ and Pence, DB (2011) Helminth community dynamics in populations of blue-winged teal (Anas discors) using two distinct migratory corridors. Journal of Parasitology Research 2011, 306257. https://doi.org/10.1155/2011/306257.CrossRefGoogle ScholarPubMed
Gibson, DI, Jones, A and Bray, RA (2002) Keys to the Trematoda, Volume 1, Gibson, DI, Jones, A and Bray, RA (eds). London, UK: CABI Publishing and The Natural History Museum.CrossRefGoogle Scholar
Hayashi, K, Ichikawa-Seki, M, Ohari, Y, Mohanta, UK, Aita, J, Satoh, H, Ehara, S, Tokashiki, M, Shiroma, T, Azuta, A, Oka, N, Watanabe, T, Harasawa, R, Inohana, S, Ichijo, T and Furuhama, K (2017) First detection of Allobilharzia visceralis (Schistosomatidae, Trematoda) from Cygnus cygnus in Japan. Parasitology International 66(1), 925929. https://doi.org/10.1016/j.parint.2016.10.015.CrossRefGoogle ScholarPubMed
Helmer, N, Blatterer, H, Hörweg, C, Reier, S, Sattmann, H, Schindelar, J, Szucsich, NU and Haring, E (2021) First record of Trichobilharzia physellae (Talbot, 1936) in Europe, a possible causative agent of cercarial dermatitis. Pathogens 10(11), 1473. https://doi.org/10.3390/pathogens10111473.CrossRefGoogle ScholarPubMed
Horák, P and Kolářová, L (2011) Snails, waterfowl and cercarial dermatitis. Freshwater Biology 56(4), 779790. https://doi.org/10.1111/j.1365-2427.2010.02545.x.CrossRefGoogle Scholar
Horák, P, Schets, FM, Kolářová, L and Brant, SV (2012) Trichobilharzia . In Liu, D (ed), Molecular Detection of Human Parasitic Pathogens. Boca Raton, FL: Taylor and Francis, CRC Press, 455465. https://doi.org/10.1201/b12264-47.Google Scholar
Horák, P, Mikeš, L, Lichtenbergová, L, Skála, V, Soldánová, M and Brant, SV (2015) Avian schistosomes and outbreaks of cercarial dermatitis. Clinical Microbiology Reviews 28(1), 165190. https://doi.org/10.1128/CMR.00043-14.CrossRefGoogle ScholarPubMed
Islam, KS (1986) The morphology and life-cycle of Trichobilharzia arcuata n. sp. (Schistosomatidae: Bilharziellinae) a nasal schistosome of water whistle ducks (Dendrocygna arcuata) in Australia. Systematic Parasitology 8(2), 117128. https://doi.org/10.1007/BF00009868.CrossRefGoogle Scholar
Johnsgard, P (2010) Ducks, Geese and Swans of the World, Revised ed. Nebraska: University of Nebraska Press.Google Scholar
Jouet, D, Skírnisson, K Kolářová, L and Ferté, H (2010a) Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infection, Genetics and Evolution 10(8), 12181227. https://doi.org/10.1016/j.meegid.2010.08.001.Google ScholarPubMed
Jouet, D, Skírnisson, K, Kolářová, L and Ferté, H (2010b) Final hosts and variability of Trichobilharzia regenti under natural conditions. Parasitology Research 107, 923930. https://doi.org/10.1007/s00436-010-1953-4.Google ScholarPubMed
Katoh, K and Standley, DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4), 772780. https://doi.org/10.1093/molbev/mst010.CrossRefGoogle ScholarPubMed
Khare, P, Raj, V, Chandra, S and Agarwal, S (2014) Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification. Journal of Forensic Dental Sciences 6(2), 8185. https://doi.org/10.4103/0975-1475.132529.CrossRefGoogle ScholarPubMed
Kolářová, L, Rudolfová, J, Hampl, V and Skírnisson, K (2006) Allobilharzia visceralis gen. nov., sp. nov. (Schistosomatidae-Trematoda) from Cygnus cygnus (L.) (Anatidae). Parasitology International 55(3), 179186. https://doi.org/10.1016/j.parint.2005.10.009.CrossRefGoogle ScholarPubMed
Kolářová, L, Horák, P and Skírnisson, K (2010) Methodical approaches in the identification of areas with a potential risk of infection by bird schistosomes causing cercarial dermatitis. Journal of Helminthology 84(3), 327–35. https://doi.org/10.1017/S0022149X09990721.CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7), 18701874. https://doi.org/10.1093/molbev/msw054.CrossRefGoogle ScholarPubMed
Leite, ACR, Costa, HM de A and Costa, JO (1978) Trichobilharzia jequitibaensis sp. n. (Trematoda, Schistosomatidae) in Cairina moschata domestica (Anatidae). Revista Brasileira de Biologia 38(4), 843846.Google Scholar
Leite, ACR, Costa, HM de A and Costa, JO (1979) The life cycle of Trichobilharzia jequitibaensis Leite, Costa and Costa, 1978 (Trematoda: Schistosomatidae). Revista Brasileira de Biologia 39(2), 341345.Google Scholar
Lockyer, AE, Olson, PD, Østergaard, P, Rollinson, D, Johnston, DA, Attwood, SW, Southgate, VR, Horák, P, Snyder, SD, Le, TH, Agatsuma, T, McManus, DP, Carmichael, AC, Naem, S and Littlewood, DTJ (2003) The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126(3), 203224. https://doi.org/10.1017/S0031182002002792.CrossRefGoogle ScholarPubMed
Lorenti, E, Brant, SV, Gilardoni, C, Diaz, JI and Cremonte, F (2022) Two new genera and species of avian schistosomes from Argentina with proposed recommendations and discussion of the polyphyletic genus Gigantobilharzia (Trematoda, Schistosomatidae). Parasitology 149(5), 675694. https://doi.org/10.1017/S0031182022000130.Google Scholar
Lutz, HL, Tkach, VV and Weckstein, JD (2017) Methods for specimen-based studies of avian symbionts. In Webster, MS (ed), The Extended Specimen: Emerging Frontiers in Collections-based Ornithological Research. Boca Raton, FL: CRC Press, 157183.Google Scholar
McLeod, JA (1937) Two new schistosomid trematodes from water-birds. The Journal of Parasitology 23(5), 456466. https://doi.org/10.2307/3272392.CrossRefGoogle Scholar
McLeod, JA and Little, GE (1942) Continued studies on cercarial dermatitis and the trematode family Schistosomatidae in Manitoba. Part I. Canadian Journal of Research 20(6), 170181. https://doi.org/10.1139/cjr42d-015.CrossRefGoogle Scholar
McMullen, DB, Beaver, PC (1945) Studies on schistosome dermatitis IX. The life cycles of three dermatitis-producing schistosomes of birds and a discussion of the subfamily Bilharziellinae (Trematoda: Schistosomatidae). American Journal of Epidemiology 42(2), 128154. https://doi.org/10.1093/oxfordjournals.aje.a119030.Google Scholar
Olson, PD, Cribb, TH, Tkach, VV, Bray, RA and Littlewood, DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33(7), 733755. https://doi.org/10.1016/S0020-7519(03)00049-3.CrossRefGoogle ScholarPubMed
Ostrowski de Núñez, M (1978) Fauna de agua dulce de Ia República Argentina. VII. Cercarias de la familia Schistosomatidae (Trematoda, Digenea). Revista Del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ e Instituto de Investigación de Las Ciencias Naturales 2(3), 6576.Google Scholar
de Núñez M, Ostrowski (1992) Trematoda. Familias Strigeidae, Diplostomidae, Clinostomidae, Schistosomatidae, Spirorchiidae y Bucephalidae. In de Castellanos, ZA (ed), Fauna de Agua Dulce de la República Argentina, volumen 9, fascículo 1. La Plata, Argentina: PROFADU (CONICET), 155.Google Scholar
Oyarzún-Ruiz, P, Muñoz, P, Paredes, E, Valenzuela, G and Ruiz, J (2019) Gastrointestinal helminths and related histopathological lesions in black-necked swans Cygnus melancoryphus from the Carlos Anwandter Nature Sanctuary, Southern Chile. Brazilian Journal of Veterinary Parasitology 28(4), 613624. https://doi.org/10.1590/S1984-29612019063.Google Scholar
Oyarzún-Ruiz, P and González-Acuña, D (2021) Checklist and state of knowledge of helminths in wild birds from Chile: an update. Austral Journal of Veterinary Sciences 53(1), 6372. https://doi.org/10.4067/S0719-81322021000100063.CrossRefGoogle Scholar
Oyarzún-Ruiz, P, Thomas, R, Santodomingo, A, Collado, G, Muñoz, P and Moreno, L (2022) Morphological, behavioral, and molecular characterization of avian schistosomes (Digenea: Schistosomatidae) in the native snail Chilina dombeyana (Chilinidae) from Southern Chile. Pathogens 11(3), 332. https://doi.org/10.3390/pathogens11030332.CrossRefGoogle ScholarPubMed
Paré, JA Black, SR (1999) Schistosomiasis in a collection of captive Chilean flamingos (Phoenicopterus chilensis). Journal of Avian Medicine and Surgery 13(3), 187191.Google Scholar
Pinto, HA, Brant, SV and Melo, AL de (2014) Physa marmorata (Mollusca: Physidae) as a natural intermediate host of Trichobilharzia (Trematoda: Schistosomatidae), a potential causative agent of avian cercarial dermatitis in Brazil. Acta Tropica 138, 3843. https://doi.org/10.1016/j.actatropica.2014.06.002.CrossRefGoogle ScholarPubMed
Pinto, HA, Pulido-Murillo, EA, de Melo, AL and Brant, SV (2017) Putative new genera and species of avian schistosomes potentially involved in human cercarial dermatitis in the Americas, Europe and Africa. Acta Tropica 176, 415420. https://doi.org/10.1016/j.actatropica.2017.09.016.Google ScholarPubMed
Pinto, HA, Tenório Mati, VL, Melo, AL and Brant, SV (2022) A putative new genus of avian schistosome transmitted by Biomphalaria straminea (Gastropoda: Planorbidae) in Brazil, with a discussion on the potential involvement in human cercarial dermatitis. Parasitology International 90, 102607. https://doi.org/10.1016/j.parint.2022.102607.CrossRefGoogle ScholarPubMed
Prüter, H, Sitko, J and Krone, O (2017) Having bird schistosomes in mind—the first detection of Bilharziella polonica (Kowalewski 1895) in the bird neural system. Parasitology Research 116(3), 865870. https://doi.org/10.1007/s00436-016-5359-9.CrossRefGoogle ScholarPubMed
Rumi, A, Gutiérrez Gregoric, DE, Núñez, V and Darrigran, GA (2008) Malacología Latinoamericana. Moluscos de agua dulce de Argentina. Revista de Biología Tropical 56(1), 77111. https://doi.org/10.15517/rbt.v56i1.5510.Google ScholarPubMed
SAG (2018) Ley N°19.473 y su Reglamento. Servicio Agrícola y Ganadero, Gobierno de Chile.Google Scholar
Sánchez, J, Alba, A, García, E, Cantillo, J, Castro, R and Vázquez, AA (2018) Detected trematodes inside blue-winged teals (Spatula discors) give insights on north-south flow of parasites through Cuba during migration. Veterinary Parasitology: Regional Studies and Reports 13, 124129. https://doi.org/10.1016/j.vprsr.2018.05.007.Google ScholarPubMed
Schell, SC (1985) Handbook of Trematodes of North America, North of Mexico. Idaho: University Press of Idaho.Google Scholar
Stanicka, A, Cichy, A, Bulantová, J, Labecka, AM, Ćmiel, AM, Templin, J, Horák, P and Żbikowska, E (2022) Thinking “outside the box”: the effect of nontarget snails in the aquatic community on mollusc-borne diseases. Science of The Total Environment 845, 157264. https://doi.org/10.1016/J.SCITOTENV.2022.157264.CrossRefGoogle ScholarPubMed
Szidat, L (1951) Cercarias schistosomicas y dermatitis schistosomica humana en la República Argentina. Comunicaciones Del Instituto Nacional de Investigación de Las Ciencias Naturales 2(10), 129150.Google Scholar
Tkach, V, Pawlowski, J and Mariaux, J (2000) Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. International Journal for Parasitology 30(1), 8393. https://doi.org/10.1016/S0020-7519(99)00163-0.CrossRefGoogle ScholarPubMed
Travassos, L, Teixeira de Freitas, JF and Kohn, A (1969) Trematódeos do Brasil. Memórias Do Instituto Oswaldo Cruz 67(1), 1886.Google Scholar
Valdovinos, C (2006) Estado de conocimiento de los Gastrópodos dulceacuícolas de Chile. Gayana 70(1), 8895. https://doi.org/10.4067/S0717-65382006000100014.Google Scholar
Vanstreels, RET, Gardiner, CH, Yabsley, MJ, Swanepoel, L, Kolesnikovas, CKM, Silva-Filho, RP, Ewbank, AC and Catão-Dias, JL (2018) Schistosomes and microfilarial parasites in Magellanic penguins. Journal of Parasitology 104(3), 322328. https://doi.org/10.1645/17-154.CrossRefGoogle ScholarPubMed
Supplementary material: File

Oyarzún-Ruiz et al. supplementary material 1

Oyarzún-Ruiz et al. supplementary material
Download Oyarzún-Ruiz et al. supplementary material 1(File)
File 30.2 KB
Supplementary material: File

Oyarzún-Ruiz et al. supplementary material 2

Oyarzún-Ruiz et al. supplementary material
Download Oyarzún-Ruiz et al. supplementary material 2(File)
File 29.6 KB
Supplementary material: File

Oyarzún-Ruiz et al. supplementary material 3

Oyarzún-Ruiz et al. supplementary material
Download Oyarzún-Ruiz et al. supplementary material 3(File)
File 44 KB
Supplementary material: File

Oyarzún-Ruiz et al. supplementary material 4

Oyarzún-Ruiz et al. supplementary material
Download Oyarzún-Ruiz et al. supplementary material 4(File)
File 43 KB
Supplementary material: File

Oyarzún-Ruiz et al. supplementary material 5

Oyarzún-Ruiz et al. supplementary material
Download Oyarzún-Ruiz et al. supplementary material 5(File)
File 37.4 KB
Supplementary material: File

Oyarzún-Ruiz et al. supplementary material 6

Oyarzún-Ruiz et al. supplementary material
Download Oyarzún-Ruiz et al. supplementary material 6(File)
File 38.9 KB