Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-09T16:12:59.322Z Has data issue: false hasContentIssue false

Acanthocotyle gurgesiella n. sp. (Monogenea: Acanthocotylidae) from the deep-sea skate Gurgesiella furvescens (Rajidae) in the south-eastern Pacific

Published online by Cambridge University Press:  21 March 2017

L.A. Ñacari
Affiliation:
Instituto Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Chile, PO Box 170, Antofagasta, Chile Instituto Milenio de Oceanografía, Universidad de Concepción, Chile
F.A. Sepulveda
Affiliation:
Instituto Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Chile, PO Box 170, Antofagasta, Chile
R. Escribano
Affiliation:
Instituto Milenio de Oceanografía, Universidad de Concepción, Chile
M.E. Oliva*
Affiliation:
Instituto Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Chile, PO Box 170, Antofagasta, Chile Instituto Milenio de Oceanografía, Universidad de Concepción, Chile

Abstract

Little is known about the diversity of parasites of the deep-sea fish of the world's oceans. Here, a new species of monogenean parasite of the deep-sea skate Gurgesiella furvescens is described. Specimens of parasites were obtained from the skin of two specimens of the dusky finless skate, G. furvescens (Rajidae), in the vicinity of Valparaiso (33°S, 72°W), central Chile, from midwater trawl fishing at depths of 350–450 m. Both morphological and molecular analyses were conducted to provide a full description of the new species, named Acanthocotyle gurgesiella. For the molecular analyses, nuclear large subunit (LSU) rDNA and the mitochondrial gene cytochrome c oxidase 1 (COI) were used. From the morphological analysis and a comparison with the known species of the genus, A. gurgesiella can be identified by a combination of morphological characteristics, including the number of testes, number of radial rows of sclerites in the pseudohaptor, aperture of the genital pore and shape of the vitelline follicles. The results from the DNA analysis indicated that A. gurgesiella has a genetic divergence of 3.2–3.7% (LSU rDNA gene) from A. urolophi, the only congener species for which molecular data are available.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boudaya, L. & Neifar, L. (2016) Triloculotrema euzeti n. sp. (Monogenea, Monocotylidae) from the nasal tissues of the blackspotted smooth-hound Mustelus punctulatus (Carcharhiniformes, Triakidae) from off Tunisia. Parasite 23, 62. doi: 10.1051/parasite/2016072.Google Scholar
Bray, R.A., Littlewood, D.T.J., Herniou, E.A. & Williams, B. (1999) Digenean parasites of deep-sea teleosts: a review and case studies of intrageneric phylogenies. Parasitology 119, S125S144.Google Scholar
Campbell, R.A., Haedrich, R.L. & Munroe, T.A. (1980) Parasitism and ecological relationships among deep-sea benthic fishes. Marine Biology 57, 301313.Google Scholar
Chisholm, L.A., Morgan, J.A.T., Adlard, R.D. & Whittington, I.D. (2001) Phylogenetic analysis of the Monocotylidae (Monogenea) inferred from 28S rDNA sequences. International Journal for Parasitology 31, 15371547.Google Scholar
Danovaro, R., Company, J.B., Corinaldesi, C., Onghia, G.D., Galil, B., Gambi, C., Gooday, A.J., Lampadariou, N., Luna, G.M., Morigi, C., Olu, K., Polymenakou, P., Ramirez-llodra, E., Sabbatini, A. & Sarda, F. (2010) Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown , and the unknowable. PloS One 5, e11832.Google Scholar
Dawes, B. (1946) The Trematoda. 644 pp. Cambridge, Cambridge University Press.Google Scholar
Filatov, D.A. (2002) Proseq: a software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes 2, 621624.Google Scholar
Justine, J.-L., Jovelin, R., Neifar, L., Mollaret, I., Lim, L.H.S., Hendrix, S.S. & Euzet, L. (2002) Phylogenetic positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) inferred from 28S rDNA sequences. Comparative Parasitology 69, 2025.Google Scholar
Kearn, G., Whittington, I., Chisholm, L. & Evans-Gowing, R. (2016) A new species of Acanthocotyle Monticelli, 1888 (Platyhelminthes: Monogenea: Acanthocotylidae) from the ventral skin of the banded stingaree, Urolophus cruciatus (Lacépède, 1804), from Tasmania, Australia. Acta Parasitologica 61, 607613.Google Scholar
Klimpel, S., Palm, H.W., Busch, M.W., Kellermanns, E. & Rückert, S. (2006) Fish parasites in the Arctic deep-sea: poor diversity in pelagic fish species vs. heavy parasite load in a demersal fish. Deep Sea Research Part I: Oceanographic Research Papers 53, 11671181.Google Scholar
Klimpel, S., Busch, M.W., Kellermanns, E., Kleinertz, S. & Palm, H.W. (2009) Metazoan deep sea fish parasites. 384 pp. Düsseldorf, Verlang Natur &Wissenschaft.Google Scholar
Kuznetsova, E.G. (1971) The monogenetic trematodes of cartilaginous fish of the Patagonian Shelf of the Atlantic Ocean. Trudy Uprk Kadrov i Uchenykh Zavedenii Ministerstva Rybnogo Khozyaistva SSR 26, 1221 (in Russian).Google Scholar
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., Mcwilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.Google Scholar
Littlewood, D.T.J., Rohde, K. & Clough, K.A. (1997) Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology 27, 12891297.Google Scholar
Manter, H.W. (1934) Some digenetic trematodes from deep-water fish of Tortugas, Florida. Publications of the Carnegie Institution of Washington 435, 257345.Google Scholar
Miller, S.A., Dykes, D.D. & Polesky, H.F.R.N. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16, 1215.Google Scholar
Ñacari, L.A. & Oliva, M.E. (2016) Metazoan parasites of deep-sea fishes from the South Eastern Pacific: exploring the role of ecology and host phylogeny. Deep Sea Research Part I: Oceanographic Research Papers 115, 123130.Google Scholar
Perkins, E.M., Donnellan, S.C., Bertozzi, T., Chisholm, L.A. & Whittington, I.D. (2009) Looks can deceive: molecular phylogeny of a family of flatworm ectoparasites (Monogenea: Capsalidae) does not reflect current morphological classification. Molecular Phylogenetics and Evolution 52, 705714.Google Scholar
Rohde, K. (1988) Gill Monogenea of deepwater and surface fish in southeastern Australia. Hydrobiologia 160, 271283.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar