Hostname: page-component-599cfd5f84-jr95t Total loading time: 0 Render date: 2025-01-07T05:51:02.981Z Has data issue: false hasContentIssue false

The Occurrence of Zinc and Other Metals in the Intestines of Strongylus spp.

Published online by Cambridge University Press:  18 November 2009

W. P. Rogers
Affiliation:
Hackett Student, University of Western Australia at the Department of Parasitology, London School of Hygiene and Tropical Medicine.

Extract

The intestines and their contents taken from several lots of Strongylus edentatus and S. vulgaris have been analysed and the amounts of certain metals and sulphur present have been estimated.

Zinc was found to be the most plentiful metal present, reaching a maximum of 0·58 mgs. per worm. Copper, silver and iron were the other metals recorded.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1940

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Askanazy, M., 1896.—“Der Peitschenwurm ein blutsaugender Parasit.” Deutsches Arch. Klin. Med., LVII (1), 104117.Google Scholar
H., B. D., 1939.—“B. D. H. Reagents for Delicate Analysis.” BritishDrugHouses, Ltd., London.Google Scholar
Chitwood, B. G., AND Chitwood, M. B., 1938.—“An Introduction to Nematology.” Babylon.Google Scholar
Drinker, C. K. and Fairhall, L. T., 1933.—“Zinc in relation to general and industrial hygiene.” U.S. Pub. Health Rep., XLVIII, 955.CrossRefGoogle Scholar
Fauré-Fremiet, E., 1913.—“La cellule intestinale et le liquid cavitaire de l'Ascaris megalocephala.” C. R. Soc. Biol. Paris. LXXIV (ii), 567569. (W.L. 11189.)Google Scholar
Hart, E. B., Elvehjem, C. A. and Hove, E., 1937.—“Physiology of zinc in the nutrition of the rat.” Amer. J. Physiol., CXIX, 768775. (W.L. 613.)Google Scholar
Kemnitz, G. von., 1912.—“Die morphologie des Stoffwechsels bei Ascaris lumbricoides.Arch. Zellforch., VII (4), 463603. (W.L. 1820.)Google Scholar
Looss, A., 1905.—“The anatomy and life of Anchylostoma duodenale. Dub.” Rec. Sch. Med. Cairo, III. 1158. (W.L. 17750.)Google Scholar
Meyers, V. C. and Morrison, D. B., 1928.—“The influence of the administration of aluminium upon the aluminium content of the tissue of the dog.” J. biol. Chem., LXXVIII, 615624. (W.L. 11063.)CrossRefGoogle Scholar
Quack, M., 1913.—“Ueben den feineren Bau der Mitteldarnzellen einiger Nematoden.” Arch. Zellforch., XI (1), 150. (W.L. 1820.)Google Scholar
Rogers, W. P., 1940.—“Haematological studies on the gut contents of certain nematodes and cestode parasites.” J. Helminth., XVIII (1), 5362. (W.L. 11224b.)CrossRefGoogle Scholar
Rusoff, L. L. and Gaddum, L. W., 1938.—“Trace element content of the newborn rat (as determined spectrographically).” J. Nutrit., XV, 169176. (W.L. 11403a.)CrossRefGoogle Scholar
Todd, W. R., Elvehjem, C. A. and Hart, E. B., 1934.—“Zinc in nutrition of the rat.” Amer. J. Physiol., CVII, 146156. (W.L. 613.)Google Scholar
Wong, San Yin., 1928.—“Colorimetric determination of iron and haemoglobin in blood. II.” J. biol. Chem., LXXVII (2), 409412. (W.L. 11063.)CrossRefGoogle Scholar
Wright, N. C. and Papish, J., 1929.—“The inorganic constituents of milk.” Science, LXIX, 78. (W.L. 19938.)CrossRefGoogle Scholar